Marcus C. Perovich, Luis E. Paniagua-Guerra, Qian Mao, Seong H. Kim, Adri C. T. van Duin, Bladimir Ramos-Alvarado
{"title":"Molecular adsorbate effects on graphite–silica superlubricity: A ReaxFF investigation","authors":"Marcus C. Perovich, Luis E. Paniagua-Guerra, Qian Mao, Seong H. Kim, Adri C. T. van Duin, Bladimir Ramos-Alvarado","doi":"10.26599/frict.2025.9441055","DOIUrl":null,"url":null,"abstract":" <p>Graphite has achieved widespread recognition as an effective solid lubricant due to its high functionality across diverse environmental conditions. Although superlubricity or ultra-low friction is readily observed at the graphite basal plane, it has been reported that certain adsorbates from the surrounding environment can deteriorate this friction regime. Here, we conducted a fundamental analysis on the effect of phenol, pentanol, and water adsorbates on the friction of graphite–silica interfaces using molecular dynamics simulations with the reactive force field ReaxFF. First, we evaluated three ReaxFF parameter sets optimized using friction-pertinent properties. It was observed that the force field optimization objective played a major role in the calculated tribological properties. Secondly, parameters such as normal load and motion directionality were investigated. Additionally, adsorption, and binding energy calculations were performed to expand upon the hypothesis that friction may be directly correlated to the interfacial molecular structure rather than binding energy and adsorbate commensuration with graphene. By quantitatively representing the interfacial roughness of each adsorbate, the hypothesis was confirmed by unequivocally explaining the calculated friction coefficients.</p> ","PeriodicalId":12442,"journal":{"name":"Friction","volume":"3 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441055","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graphite has achieved widespread recognition as an effective solid lubricant due to its high functionality across diverse environmental conditions. Although superlubricity or ultra-low friction is readily observed at the graphite basal plane, it has been reported that certain adsorbates from the surrounding environment can deteriorate this friction regime. Here, we conducted a fundamental analysis on the effect of phenol, pentanol, and water adsorbates on the friction of graphite–silica interfaces using molecular dynamics simulations with the reactive force field ReaxFF. First, we evaluated three ReaxFF parameter sets optimized using friction-pertinent properties. It was observed that the force field optimization objective played a major role in the calculated tribological properties. Secondly, parameters such as normal load and motion directionality were investigated. Additionally, adsorption, and binding energy calculations were performed to expand upon the hypothesis that friction may be directly correlated to the interfacial molecular structure rather than binding energy and adsorbate commensuration with graphene. By quantitatively representing the interfacial roughness of each adsorbate, the hypothesis was confirmed by unequivocally explaining the calculated friction coefficients.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.