Gian Luca Dolso, Shunsuke A. Sato, Giacomo Inzani, Nicola Di Palo, Bruno Moio, Rocío Borrego-Varillas, Mauro Nisoli, Matteo Lucchini
{"title":"Attosecond virtual charge dynamics in dielectrics","authors":"Gian Luca Dolso, Shunsuke A. Sato, Giacomo Inzani, Nicola Di Palo, Bruno Moio, Rocío Borrego-Varillas, Mauro Nisoli, Matteo Lucchini","doi":"10.1038/s41566-025-01700-6","DOIUrl":null,"url":null,"abstract":"<p>The interaction of intense infrared pulses with a solid target can initiate light-field-driven phenomena that enable the reversible manipulation of their electro-optical properties on an attosecond timescale. This interaction regime therefore offers a unique opportunity to induce and control new functionalities with very high speed. However, the efficient exploitation of coherent light–matter states for future applications requires a detailed understanding of the underlying physical processes. This task is complicated by the complex and intertwined nature of inter- and intraband dynamics of real and virtual carriers underlying field-driven phenomena in solids. Here we used attosecond transient reflection spectroscopy to investigate ultrafast virtual electron dynamics in a prototype dielectric (monocrystalline diamond) over a broad photon energy range not previously accessed. Independent calibration of the pump–probe delay axis allowed direct comparison with numerical calculations, revealing that virtual interband transitions affect the timing and adiabaticity of the crystal response, even in a regime believed to be dominated by intraband motion. By demonstrating that virtual interband transitions are indispensable for an accurate description of strong-field-induced phenomena in solids, our results constitute a relevant step towards understanding transient nonlinear optical processes, a cornerstone for the future development of information processing and petahertz electronics.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"153 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01700-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction of intense infrared pulses with a solid target can initiate light-field-driven phenomena that enable the reversible manipulation of their electro-optical properties on an attosecond timescale. This interaction regime therefore offers a unique opportunity to induce and control new functionalities with very high speed. However, the efficient exploitation of coherent light–matter states for future applications requires a detailed understanding of the underlying physical processes. This task is complicated by the complex and intertwined nature of inter- and intraband dynamics of real and virtual carriers underlying field-driven phenomena in solids. Here we used attosecond transient reflection spectroscopy to investigate ultrafast virtual electron dynamics in a prototype dielectric (monocrystalline diamond) over a broad photon energy range not previously accessed. Independent calibration of the pump–probe delay axis allowed direct comparison with numerical calculations, revealing that virtual interband transitions affect the timing and adiabaticity of the crystal response, even in a regime believed to be dominated by intraband motion. By demonstrating that virtual interband transitions are indispensable for an accurate description of strong-field-induced phenomena in solids, our results constitute a relevant step towards understanding transient nonlinear optical processes, a cornerstone for the future development of information processing and petahertz electronics.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.