Yiyang Wang, Chenxing Lu, Minchao Liu, Can Zhu, Jinyuan Zhang, Shucheng Qin, Zhe Liu, Meirong Liu, Yao Zhao, Fuyi Wang, Xiaojun Li, Lei Meng, Yongfang Li
{"title":"Solvent-assisted reaction for spontaneous defect passivation in perovskite solar cells","authors":"Yiyang Wang, Chenxing Lu, Minchao Liu, Can Zhu, Jinyuan Zhang, Shucheng Qin, Zhe Liu, Meirong Liu, Yao Zhao, Fuyi Wang, Xiaojun Li, Lei Meng, Yongfang Li","doi":"10.1038/s41566-025-01704-2","DOIUrl":null,"url":null,"abstract":"<p>Perovskite solar cells have developed rapidly in the past decade. For fabricating highly efficient perovskite solar cells, efforts have been devoted to modulate the nucleation and crystallization processes of perovskite active layers by solvent, antisolvent and additive engineering. However, there is still a need for effective strategies to regulate perovskite nucleation and crystal growth and passivating in situ defects on the surface and at the grain boundaries. Here we introduce 1,4-butane sultone as the second solvent into the perovskite precursor solution to regulate the nucleation of the α-FAPbI<sub>3</sub> layer. The interaction between 1,4-butane sultone and the solute decreases the density of nucleation and inhibits secondary nucleation. At the same time, the ring-opening conversion of 1,4-butane sultone during the annealing process produces 4-chlorobutane-1-sulfonate and 4-iodobutane-1-sulfonate, which effectively passivate the surface defects in the perovskite. As a result, treated <i>n–i–p</i> planar perovskite solar cells attain a power conversion efficiency of 26.5% (certified as 26.2%), with enhanced long-term stability.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"9 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01704-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells have developed rapidly in the past decade. For fabricating highly efficient perovskite solar cells, efforts have been devoted to modulate the nucleation and crystallization processes of perovskite active layers by solvent, antisolvent and additive engineering. However, there is still a need for effective strategies to regulate perovskite nucleation and crystal growth and passivating in situ defects on the surface and at the grain boundaries. Here we introduce 1,4-butane sultone as the second solvent into the perovskite precursor solution to regulate the nucleation of the α-FAPbI3 layer. The interaction between 1,4-butane sultone and the solute decreases the density of nucleation and inhibits secondary nucleation. At the same time, the ring-opening conversion of 1,4-butane sultone during the annealing process produces 4-chlorobutane-1-sulfonate and 4-iodobutane-1-sulfonate, which effectively passivate the surface defects in the perovskite. As a result, treated n–i–p planar perovskite solar cells attain a power conversion efficiency of 26.5% (certified as 26.2%), with enhanced long-term stability.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.