Ramil Nigmatullin, Kévin Hémery, Khaldoon Ghanem, Steven Moses, Dan Gresh, Peter Siegfried, Michael Mills, Thomas Gatterman, Nathan Hewitt, Etienne Granet, Henrik Dreyer
{"title":"Experimental demonstration of breakeven for a compact fermionic encoding","authors":"Ramil Nigmatullin, Kévin Hémery, Khaldoon Ghanem, Steven Moses, Dan Gresh, Peter Siegfried, Michael Mills, Thomas Gatterman, Nathan Hewitt, Etienne Granet, Henrik Dreyer","doi":"10.1038/s41567-025-02931-8","DOIUrl":null,"url":null,"abstract":"<p>Solving the Fermi–Hubbard model is a central task in the study of strongly correlated materials. Digital quantum computers can, in principle, be suitable for this purpose, but have so far been limited to quasi-one-dimensional models. This is because of exponential overheads caused by the interplay of noise and the non-locality of the mapping between fermions and qubits. Here we use a trapped-ion quantum computer to experimentally demonstrate that a recently developed local encoding can overcome this problem. In particular, we show that suitable reordering of terms and application of circuit identities—a scheme called corner hopping—substantially reduces the cost of simulating fermionic hopping. This enables the efficient preparation of the ground state of a 6 × 6 spinless Fermi–Hubbard model encoded in 48 physical qubits. We also develop two error mitigation schemes for systems with conserved quantities, based on local postselection and on extrapolation of local observables, respectively. Our results suggest that Fermi–Hubbard models beyond classical simulability can be addressed by digital quantum computers without large increases in gate fidelity.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"33 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02931-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solving the Fermi–Hubbard model is a central task in the study of strongly correlated materials. Digital quantum computers can, in principle, be suitable for this purpose, but have so far been limited to quasi-one-dimensional models. This is because of exponential overheads caused by the interplay of noise and the non-locality of the mapping between fermions and qubits. Here we use a trapped-ion quantum computer to experimentally demonstrate that a recently developed local encoding can overcome this problem. In particular, we show that suitable reordering of terms and application of circuit identities—a scheme called corner hopping—substantially reduces the cost of simulating fermionic hopping. This enables the efficient preparation of the ground state of a 6 × 6 spinless Fermi–Hubbard model encoded in 48 physical qubits. We also develop two error mitigation schemes for systems with conserved quantities, based on local postselection and on extrapolation of local observables, respectively. Our results suggest that Fermi–Hubbard models beyond classical simulability can be addressed by digital quantum computers without large increases in gate fidelity.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.