Picoliter-Volume Isothermal Titration Calorimetry Using Parylene Chip Calorimeter Integrated with on-Demand Droplet Microfluidics

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-16 DOI:10.1002/smll.202504872
Minho Chae, Sung Min Nam, Sumin Seo, Yo-han Choi, Hyeju Yang, Jiwoo Kim, Bum-Joon Jung, Wonhee Lee
{"title":"Picoliter-Volume Isothermal Titration Calorimetry Using Parylene Chip Calorimeter Integrated with on-Demand Droplet Microfluidics","authors":"Minho Chae,&nbsp;Sung Min Nam,&nbsp;Sumin Seo,&nbsp;Yo-han Choi,&nbsp;Hyeju Yang,&nbsp;Jiwoo Kim,&nbsp;Bum-Joon Jung,&nbsp;Wonhee Lee","doi":"10.1002/smll.202504872","DOIUrl":null,"url":null,"abstract":"<p>Isothermal titration calorimetry (ITC) is a gold-standard technique for directly quantifying biomolecular interactions, but its broader applicability is limited by large sample consumption and low throughput. To address these challenges, considerable efforts are made to develop chip calorimeter systems. Here, a high-sensitivity chip calorimeter integrated with on-demand droplet microfluidics is presented, capable of performing ITC with picoliter-volume samples. The device combines vanadium pentoxide thermistors, vacuum-insulated parylene microfluidics, and multilayer Polydimethylsiloxane microfluidics to achieve precise thermal measurement and fluidic control. On-demand generation and merging of titrant and titrand droplets enable accurate control of molar ratios for droplet-based titration. The chip calorimeter achieves a temperature resolution of 14.9 µK and a power resolution of 2.31 nW. The platform is validated by measuring the binding interaction between 18-crown-6 and barium chloride, with extracted thermodynamic parameters in good agreement with conventional ITC. This work advances miniaturized ITC technology by providing a scalable and efficient platform for quantitative biochemical analysis, particularly in sample-limited and high-throughput applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 32","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202504872","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504872","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Isothermal titration calorimetry (ITC) is a gold-standard technique for directly quantifying biomolecular interactions, but its broader applicability is limited by large sample consumption and low throughput. To address these challenges, considerable efforts are made to develop chip calorimeter systems. Here, a high-sensitivity chip calorimeter integrated with on-demand droplet microfluidics is presented, capable of performing ITC with picoliter-volume samples. The device combines vanadium pentoxide thermistors, vacuum-insulated parylene microfluidics, and multilayer Polydimethylsiloxane microfluidics to achieve precise thermal measurement and fluidic control. On-demand generation and merging of titrant and titrand droplets enable accurate control of molar ratios for droplet-based titration. The chip calorimeter achieves a temperature resolution of 14.9 µK and a power resolution of 2.31 nW. The platform is validated by measuring the binding interaction between 18-crown-6 and barium chloride, with extracted thermodynamic parameters in good agreement with conventional ITC. This work advances miniaturized ITC technology by providing a scalable and efficient platform for quantitative biochemical analysis, particularly in sample-limited and high-throughput applications.

Abstract Image

结合按需液滴微流体的聚对二甲苯芯片量热计的皮升体积等温滴定量热法。
等温滴定量热法(ITC)是一种直接定量生物分子相互作用的金标准技术,但其广泛的适用性受到样品消耗量大和通量低的限制。为了应对这些挑战,人们在开发芯片量热计系统方面做出了相当大的努力。本文介绍了一种集成了按需液滴微流控的高灵敏度芯片量热计,能够对皮升体积的样品进行ITC。该装置结合了五氧化二钒热敏电阻、真空绝缘对二甲苯微流体和多层聚二甲基硅氧烷微流体,实现了精确的热测量和流体控制。按需生成和合并滴定剂和滴定液滴能够精确控制滴基滴定的摩尔比。芯片量热计的温度分辨率为14.9µK,功率分辨率为2.31 nW。通过测量18-冠-6与氯化钡之间的结合相互作用,验证了该平台的有效性,提取的热力学参数与常规ITC基本一致。这项工作通过为定量生化分析提供可扩展和高效的平台,特别是在样品限制和高通量应用中,推进了小型化ITC技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信