Gating Gas Permeability Through Dynamic Cracking of Liquid Crystal Polymer Membranes

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-16 DOI:10.1002/smll.202503444
Yuxin You, Youssef M. Golestani, Mert O. Astam, Danqing Liu
{"title":"Gating Gas Permeability Through Dynamic Cracking of Liquid Crystal Polymer Membranes","authors":"Yuxin You,&nbsp;Youssef M. Golestani,&nbsp;Mert O. Astam,&nbsp;Danqing Liu","doi":"10.1002/smll.202503444","DOIUrl":null,"url":null,"abstract":"<p>Intelligent membranes promise transformative advances in real-time control of substance permeation, surpassing current technologies through their intrinsic adaptability to environmental stimuli. In this work, a material-regulated approach to dynamically control substance permeation, such as gas, using hybrid bilayer membranes composed of gold-coated liquid crystal oligomer networks (Au-LCONs), is established. Thermally driven LCON actuation induces a stress mismatch at the LCON-Au interface that cracks the Au layer, effectively opening “gates” in the impermeable Au to allow gas transport through the membrane; this reversible effect can be precisely controlled with temperature, facilitating the use of this system for triggering gas-mediated chemical reactions on demand. Furthermore, switchable gas transport can be localized by the patterned Au coating on LCONs, restricting gas flow and chemical reactions to designated areas. This work paves the way for advancing intelligent materials for applications with precise and switchable substance permeability requirements, such as environmental monitoring, drug delivery, preservation systems, and filtration technologies.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 35","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202503444","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503444","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent membranes promise transformative advances in real-time control of substance permeation, surpassing current technologies through their intrinsic adaptability to environmental stimuli. In this work, a material-regulated approach to dynamically control substance permeation, such as gas, using hybrid bilayer membranes composed of gold-coated liquid crystal oligomer networks (Au-LCONs), is established. Thermally driven LCON actuation induces a stress mismatch at the LCON-Au interface that cracks the Au layer, effectively opening “gates” in the impermeable Au to allow gas transport through the membrane; this reversible effect can be precisely controlled with temperature, facilitating the use of this system for triggering gas-mediated chemical reactions on demand. Furthermore, switchable gas transport can be localized by the patterned Au coating on LCONs, restricting gas flow and chemical reactions to designated areas. This work paves the way for advancing intelligent materials for applications with precise and switchable substance permeability requirements, such as environmental monitoring, drug delivery, preservation systems, and filtration technologies.

Abstract Image

通过液晶聚合物膜的动态开裂控制气体渗透性。
智能膜有望在实时控制物质渗透方面取得革命性进展,通过其对环境刺激的内在适应性超越当前技术。在这项工作中,建立了一种材料调节的方法来动态控制物质的渗透,如气体,使用由镀金液晶低聚物网络(Au-LCONs)组成的杂化双层膜。热驱动的LCON驱动在LCON-Au界面处引起应力失配,导致Au层破裂,有效地打开了不透水的Au中的“门”,允许气体通过膜输送;这种可逆效应可以通过温度精确控制,便于根据需要使用该系统触发气体介导的化学反应。此外,可切换的气体传输可以通过lcon上的图案金涂层来定位,将气体流动和化学反应限制在指定区域。这项工作为推进具有精确和可切换物质渗透性要求的智能材料的应用铺平了道路,例如环境监测,药物输送,保存系统和过滤技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信