{"title":"Electronic Modulation of Nickel Cobalt Phosphide Nanosheets by Ce Doping for Efficient Overall Water Splitting","authors":"Mingfang Zhang, Haimei Xu, Huimin Yang, Xiaogang Shang, Meng Yuan, Yang Fu, Yue Xiao, Sheng Wang, Xiao Wang, Baohua Jia, Songbo Li, Tianyi Ma","doi":"10.1002/smll.202504837","DOIUrl":null,"url":null,"abstract":"<p>Efficient hydrogen (H<sub>2</sub>) generation from electrochemical overall water splitting (OWS) is key to a sustainable H<sub>2</sub> economy. Low-cost transition metal-based catalysts, such as Ni- and Co-based phosphides, have gained attention for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) due to their excellent corrosion resistance and high electrical conductivity. In particular, bimetallic Ni and Co-based phosphide catalysts are considered highly efficient electrocatalysts for OWS due to their abundant adsorption sites and low adsorption energy for hydrogen species. However, improving their stability and activity remains challenging. Herein, a Ce doping NiCo phosphide catalyst is presented with vary Ce amount (Ce<sub>x</sub>-NiCoP) supported on nickel foam (NF) with multi-site functionality, achieving highly efficient HER performance comparable to benchmark platinum catalysts support carbon fiber or NF (Pt/C or Pt/NF). Comprehensive characterization results show that the optimal amount of Ce doping significantly influences the electronic structure of the catalyst, preventing the formation of Ni<sub>5</sub>P<sub>4</sub> and CeO<sub>2</sub>, promoting the dominant NiCoP phase. This modification enhances the catalyst's hydrophilicity, improving the HER activity significantly. Remarkably, the catalyst also demonstrates exceptional OER performance, making it a highly active and stable bifunctional catalyst for OWS, with the highest energy efficiency of 96.7%.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 32","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202504837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504837","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient hydrogen (H2) generation from electrochemical overall water splitting (OWS) is key to a sustainable H2 economy. Low-cost transition metal-based catalysts, such as Ni- and Co-based phosphides, have gained attention for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) due to their excellent corrosion resistance and high electrical conductivity. In particular, bimetallic Ni and Co-based phosphide catalysts are considered highly efficient electrocatalysts for OWS due to their abundant adsorption sites and low adsorption energy for hydrogen species. However, improving their stability and activity remains challenging. Herein, a Ce doping NiCo phosphide catalyst is presented with vary Ce amount (Cex-NiCoP) supported on nickel foam (NF) with multi-site functionality, achieving highly efficient HER performance comparable to benchmark platinum catalysts support carbon fiber or NF (Pt/C or Pt/NF). Comprehensive characterization results show that the optimal amount of Ce doping significantly influences the electronic structure of the catalyst, preventing the formation of Ni5P4 and CeO2, promoting the dominant NiCoP phase. This modification enhances the catalyst's hydrophilicity, improving the HER activity significantly. Remarkably, the catalyst also demonstrates exceptional OER performance, making it a highly active and stable bifunctional catalyst for OWS, with the highest energy efficiency of 96.7%.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.