Development and evaluation of methods for objective comparison of x-ray fluorescence spectra.

Meghan Prusinowski, Evie Nguyen, Cedric Neumann, Tatiana Trejos
{"title":"Development and evaluation of methods for objective comparison of x-ray fluorescence spectra.","authors":"Meghan Prusinowski, Evie Nguyen, Cedric Neumann, Tatiana Trejos","doi":"10.1111/1556-4029.70105","DOIUrl":null,"url":null,"abstract":"<p><p>This study provides statistical support for X-ray Fluorescence (XRF) spectral comparisons using quantitative similarity measures. A set of electrical tapes originating from different rolls (94 rolls, 24 brands, 54 product types, four countries of manufacture) and an additional subset originating from the same source (20 samples from the same roll) are characterized via XRF. Noise in spectra is filtered using Fast Fourier Transform, and baselines are corrected using a second derivative-constrained weighted regression. Then, spectral contrast angle ratios (SCAR) are calculated for each pairwise comparison (n = 4561). The SCAR metric can capture information on the variability between the compared samples and the variability within same-source samples. Based on that measure, a threshold minimizing erroneous associations or exclusions is proposed. In addition, SCAR is used to classify samples using cluster analysis. An automated approach to sample comparison utilizing a random forest algorithm assists in identifying the basis for similarities or differences between compared spectra. This study describes a more objective approach to reporting opinions and probabilistic determinations of spectral data that can be used as a model for other fields and materials. The use of the SCAR metric can support the forensic examiner's decision-making process and add transparency in various ways.</p>","PeriodicalId":94080,"journal":{"name":"Journal of forensic sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1556-4029.70105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides statistical support for X-ray Fluorescence (XRF) spectral comparisons using quantitative similarity measures. A set of electrical tapes originating from different rolls (94 rolls, 24 brands, 54 product types, four countries of manufacture) and an additional subset originating from the same source (20 samples from the same roll) are characterized via XRF. Noise in spectra is filtered using Fast Fourier Transform, and baselines are corrected using a second derivative-constrained weighted regression. Then, spectral contrast angle ratios (SCAR) are calculated for each pairwise comparison (n = 4561). The SCAR metric can capture information on the variability between the compared samples and the variability within same-source samples. Based on that measure, a threshold minimizing erroneous associations or exclusions is proposed. In addition, SCAR is used to classify samples using cluster analysis. An automated approach to sample comparison utilizing a random forest algorithm assists in identifying the basis for similarities or differences between compared spectra. This study describes a more objective approach to reporting opinions and probabilistic determinations of spectral data that can be used as a model for other fields and materials. The use of the SCAR metric can support the forensic examiner's decision-making process and add transparency in various ways.

x射线荧光光谱客观比较方法的发展与评价。
本研究提供了x射线荧光(XRF)光谱比较使用定量相似性措施的统计支持。通过XRF对来自不同卷(94卷,24个品牌,54种产品类型,四个制造国家)的一组电气胶带和来自同一来源的额外子集(来自同一卷的20个样品)进行了表征。使用快速傅立叶变换过滤光谱中的噪声,并使用二阶导数约束加权回归校正基线。然后,计算每个两两比较的光谱对比角比(SCAR) (n = 4561)。SCAR度量可以捕获比较样本之间的可变性和相同来源样本内的可变性的信息。在此基础上,提出了最小化错误关联或排除的阈值。此外,SCAR采用聚类分析对样本进行分类。利用随机森林算法进行样本比较的自动化方法有助于确定比较光谱之间的相似性或差异性的基础。本研究描述了一种更客观的方法来报告意见和光谱数据的概率确定,可以用作其他领域和材料的模型。SCAR指标的使用可以支持法医审查员的决策过程,并以各种方式增加透明度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信