Abnormal association between neural activity and genetic expressions of impulsivity in attention deficit hyperactivity disorder: an Adolescent Brain Cognitive Development study.
Soohyun Jeon, Jae-Eon Kang, Jundong Hwang, Vince D Calhoun, Jong-Hwan Lee
{"title":"Abnormal association between neural activity and genetic expressions of impulsivity in attention deficit hyperactivity disorder: an Adolescent Brain Cognitive Development study.","authors":"Soohyun Jeon, Jae-Eon Kang, Jundong Hwang, Vince D Calhoun, Jong-Hwan Lee","doi":"10.1016/j.bpsc.2025.06.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Impulsivity in highly heritable attention deficit hyperactivity disorder (ADHD) has been studied using neural activity via fMRI or genetic data, but rarely with multivariate methods linking both. We investigated coupled neural activity and gene expression signatures, using parallel independent component analysis (pICA) and Adolescent Brain Cognitive Development data.</p><p><strong>Methods: </strong>Children with ADHD (n = 394; 63% males) and healthy controls (n = 1,000; 47% males) of European ancestry were included. The subjects were randomly divided into 80% discovery and 20% replication datasets with demographic stratification. We analyzed neural activity and gene expressions from the discovery datasets using pICA and extracted paired independent components (pICs). The loading coefficients of the pICs were utilized to predict behavioral and cognitive data for stop signal task (SST) in replication datasets.</p><p><strong>Results: </strong>We identified three pICs estimated from gene expression in the cortex, cerebellum, and nucleus accumbens. Significant neural activity was mainly localized to the orbital/inferior/middle frontal gyri, rectal gyrus, precuneus, inferior temporal gyrus, inferior parietal lobule, and cerebellum. Significant gene components were associated with immunoglobulin, taste receptor, and immunity-related terms and were overlapped with ADHD-related genes. The extracted fMRI-/Gene-ICs were significantly correlated with mean reaction time, stop signal reaction time of SST, and behavioral inhibition with a large boost in sensitivity when both the paired fMRI-/Gene-ICs and their interaction were used in a multimodal regression analysis.</p><p><strong>Conclusion: </strong>We reported biologically plausible pairs of neural activity and gene sets using pICA, which were significantly associated with ADHD impulsivity-related behavioral and cognitive data.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253491/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry. Cognitive neuroscience and neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpsc.2025.06.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Impulsivity in highly heritable attention deficit hyperactivity disorder (ADHD) has been studied using neural activity via fMRI or genetic data, but rarely with multivariate methods linking both. We investigated coupled neural activity and gene expression signatures, using parallel independent component analysis (pICA) and Adolescent Brain Cognitive Development data.
Methods: Children with ADHD (n = 394; 63% males) and healthy controls (n = 1,000; 47% males) of European ancestry were included. The subjects were randomly divided into 80% discovery and 20% replication datasets with demographic stratification. We analyzed neural activity and gene expressions from the discovery datasets using pICA and extracted paired independent components (pICs). The loading coefficients of the pICs were utilized to predict behavioral and cognitive data for stop signal task (SST) in replication datasets.
Results: We identified three pICs estimated from gene expression in the cortex, cerebellum, and nucleus accumbens. Significant neural activity was mainly localized to the orbital/inferior/middle frontal gyri, rectal gyrus, precuneus, inferior temporal gyrus, inferior parietal lobule, and cerebellum. Significant gene components were associated with immunoglobulin, taste receptor, and immunity-related terms and were overlapped with ADHD-related genes. The extracted fMRI-/Gene-ICs were significantly correlated with mean reaction time, stop signal reaction time of SST, and behavioral inhibition with a large boost in sensitivity when both the paired fMRI-/Gene-ICs and their interaction were used in a multimodal regression analysis.
Conclusion: We reported biologically plausible pairs of neural activity and gene sets using pICA, which were significantly associated with ADHD impulsivity-related behavioral and cognitive data.