Fan Gao , Kang Sun , Sicheng Wang , Xiaozhen Zhang , Xueli Bai
{"title":"Lactate metabolism reprogramming in PDAC: Potential for tumor therapy","authors":"Fan Gao , Kang Sun , Sicheng Wang , Xiaozhen Zhang , Xueli Bai","doi":"10.1016/j.bbcan.2025.189373","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. During tumor progression, metabolic reprogramming plays a crucial role in both tumor proliferation and immune evasion. In PDAC, genetic mutations and environment limitations lead to resulting in increased lactate production through enhanced glycolysis. Elevated glycolysis is a significant metabolic feature in pancreatic cancer, leading to lactate accumulation within both the tumor cells and tumor immune microenvironment. Lactate not only promotes tumor growth and sustains its survival but also has a profound impact on the immune-suppressive phenotype switch of immune cells. Lactate promotes tumor progression through various biological processes. Pharmacological agents targeting lactate generation, accumulation and lactate-related molecular pathways show potential clinical translation value in cancer treatment.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 4","pages":"Article 189373"},"PeriodicalIF":9.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X25001155","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. During tumor progression, metabolic reprogramming plays a crucial role in both tumor proliferation and immune evasion. In PDAC, genetic mutations and environment limitations lead to resulting in increased lactate production through enhanced glycolysis. Elevated glycolysis is a significant metabolic feature in pancreatic cancer, leading to lactate accumulation within both the tumor cells and tumor immune microenvironment. Lactate not only promotes tumor growth and sustains its survival but also has a profound impact on the immune-suppressive phenotype switch of immune cells. Lactate promotes tumor progression through various biological processes. Pharmacological agents targeting lactate generation, accumulation and lactate-related molecular pathways show potential clinical translation value in cancer treatment.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.