{"title":"Optimizing stroke detection with genetic algorithm-based feature selection in deep learning models.","authors":"Gouri Sankar Nayak, Pradeep Kumar Mallick, Dhaneshwar Prasad Sahu, Avinash Kathi, Rewat Reddy, Jahnavi Viyyapu, Nithina Pabbisetti, Sai Parvathi Udayana, Harika Sanapathi","doi":"10.1080/23279095.2025.2516259","DOIUrl":null,"url":null,"abstract":"<p><p>Brain stroke is a leading cause of disability and mortality worldwide, necessitating the development of accurate and efficient diagnostic models. In this study, we explore the integration of Genetic Algorithm (GA)-based feature selection with three state-of-the-art deep learning architectures InceptionV3, VGG19, and MobileNetV2 to enhance stroke detection from neuroimaging data. GA is employed to optimize feature selection, reducing redundancy and improving model performance. The selected features are subsequently fed into the respective deep-learning models for classification. The dataset used in this study comprises neuroimages categorized into \"Normal\" and \"Stroke\" classes. Experimental results demonstrate that incorporating GA improves classification accuracy while reducing computational complexity. A comparative analysis of the three architectures reveals their effectiveness in stroke detection, with MobileNetV2 achieving the highest accuracy of 97.21%. Notably, the integration of Genetic Algorithms with MobileNetV2 for feature selection represents a novel contribution, setting this study apart from prior approaches that rely solely on traditional CNN pipelines. Owing to its lightweight design and low computational demands, MobileNetV2 also offers significant advantages for real-time clinical deployment, making it highly applicable for use in emergency care settings where rapid diagnosis is critical. Additionally, performance metrics such as precision, recall, F1-score, and Receiver Operating Characteristic (ROC) curves are evaluated to provide comprehensive insights into model efficacy. This research underscores the potential of genetic algorithm-driven optimization in enhancing deep learning-based medical image classification, paving the way for more efficient and reliable stroke diagnosis.</p>","PeriodicalId":51308,"journal":{"name":"Applied Neuropsychology-Adult","volume":" ","pages":"1-10"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Neuropsychology-Adult","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/23279095.2025.2516259","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brain stroke is a leading cause of disability and mortality worldwide, necessitating the development of accurate and efficient diagnostic models. In this study, we explore the integration of Genetic Algorithm (GA)-based feature selection with three state-of-the-art deep learning architectures InceptionV3, VGG19, and MobileNetV2 to enhance stroke detection from neuroimaging data. GA is employed to optimize feature selection, reducing redundancy and improving model performance. The selected features are subsequently fed into the respective deep-learning models for classification. The dataset used in this study comprises neuroimages categorized into "Normal" and "Stroke" classes. Experimental results demonstrate that incorporating GA improves classification accuracy while reducing computational complexity. A comparative analysis of the three architectures reveals their effectiveness in stroke detection, with MobileNetV2 achieving the highest accuracy of 97.21%. Notably, the integration of Genetic Algorithms with MobileNetV2 for feature selection represents a novel contribution, setting this study apart from prior approaches that rely solely on traditional CNN pipelines. Owing to its lightweight design and low computational demands, MobileNetV2 also offers significant advantages for real-time clinical deployment, making it highly applicable for use in emergency care settings where rapid diagnosis is critical. Additionally, performance metrics such as precision, recall, F1-score, and Receiver Operating Characteristic (ROC) curves are evaluated to provide comprehensive insights into model efficacy. This research underscores the potential of genetic algorithm-driven optimization in enhancing deep learning-based medical image classification, paving the way for more efficient and reliable stroke diagnosis.
期刊介绍:
pplied Neuropsychology-Adult publishes clinical neuropsychological articles concerning assessment, brain functioning and neuroimaging, neuropsychological treatment, and rehabilitation in adults. Full-length articles and brief communications are included. Case studies of adult patients carefully assessing the nature, course, or treatment of clinical neuropsychological dysfunctions in the context of scientific literature, are suitable. Review manuscripts addressing critical issues are encouraged. Preference is given to papers of clinical relevance to others in the field. All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief, and, if found suitable for further considerations are peer reviewed by independent, anonymous expert referees. All peer review is single-blind and submission is online via ScholarOne Manuscripts.