{"title":"Click-Triggered Bioorthogonal Bond-Cleavage Reactions","authors":"Patrick Keppel, Sebastian Hecko, Hannes Mikula","doi":"10.1007/s41061-025-00492-1","DOIUrl":null,"url":null,"abstract":"<div><p>Bioorthogonal bond-cleavage reactions have evolved into powerful tools for chemical biology, representing a promising strategy for achieving controlled release of molecules under physiologically relevant conditions, even in living organisms. Since their discovery, significant efforts have been invested in the development and understanding of the underlying chemistries to enhance the click-to-release performance, biocompatibility, and stability of bioorthogonal tools. In this review, we aim to provide a concise overview of click-triggered bioorthogonal bond-cleavage reactions, with an emphasis on the mechanisms and characteristics of the most commonly applied click-to-release chemistries.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 3","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-025-00492-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Bioorthogonal bond-cleavage reactions have evolved into powerful tools for chemical biology, representing a promising strategy for achieving controlled release of molecules under physiologically relevant conditions, even in living organisms. Since their discovery, significant efforts have been invested in the development and understanding of the underlying chemistries to enhance the click-to-release performance, biocompatibility, and stability of bioorthogonal tools. In this review, we aim to provide a concise overview of click-triggered bioorthogonal bond-cleavage reactions, with an emphasis on the mechanisms and characteristics of the most commonly applied click-to-release chemistries.
期刊介绍:
Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science.
Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community.
In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.