Shape-constrained estimation for current duration data in cross-sectional studies.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Chi Wing Chu, Hok Kan Ling
{"title":"Shape-constrained estimation for current duration data in cross-sectional studies.","authors":"Chi Wing Chu, Hok Kan Ling","doi":"10.1007/s10985-025-09658-x","DOIUrl":null,"url":null,"abstract":"<p><p>We study shape-constrained nonparametric estimation of the underlying survival function in a cross-sectional study without follow-up. Assuming the rate of initiation event is stationary over time, the observed current duration becomes a length-biased and multiplicatively censored counterpart of the underlying failure time of interest. We focus on two shape constraints for the underlying survival function, namely, log-concavity and convexity. The log-concavity constraint is versatile as it allows for log-concave densities, bi-log-concave distributions, increasing densities, and multi-modal densities. We establish the consistency and pointwise asymptotic distribution of the shape-constrained estimators. Specifically, the proposed estimator under log-concavity is consistent and tuning-parameter-free, thus circumventing the well-known inconsistency issue of the Grenander estimator at 0, where correction methods typically involve tuning parameters.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09658-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We study shape-constrained nonparametric estimation of the underlying survival function in a cross-sectional study without follow-up. Assuming the rate of initiation event is stationary over time, the observed current duration becomes a length-biased and multiplicatively censored counterpart of the underlying failure time of interest. We focus on two shape constraints for the underlying survival function, namely, log-concavity and convexity. The log-concavity constraint is versatile as it allows for log-concave densities, bi-log-concave distributions, increasing densities, and multi-modal densities. We establish the consistency and pointwise asymptotic distribution of the shape-constrained estimators. Specifically, the proposed estimator under log-concavity is consistent and tuning-parameter-free, thus circumventing the well-known inconsistency issue of the Grenander estimator at 0, where correction methods typically involve tuning parameters.

横断面研究中当前持续时间数据的形状约束估计。
我们在没有随访的横断面研究中研究了潜在生存函数的形状约束非参数估计。假设起始事件的速率随时间的推移是平稳的,观察到的当前持续时间就成为感兴趣的潜在故障时间的长度偏倚和乘截的对应物。我们重点研究了底层生存函数的两个形状约束,即对数凹性和凸性。log-凹凸性约束是通用的,因为它允许log-凹密度、双log-凹分布、增加密度和多模态密度。我们建立了形状约束估计量的相合性和点渐近分布。具体来说,在log-凹凸性下提出的估计量是一致的和无调优参数的,从而避免了众所周知的Grenander估计量在0处的不一致问题,其中校正方法通常涉及调优参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信