{"title":"Shape-constrained estimation for current duration data in cross-sectional studies.","authors":"Chi Wing Chu, Hok Kan Ling","doi":"10.1007/s10985-025-09658-x","DOIUrl":null,"url":null,"abstract":"<p><p>We study shape-constrained nonparametric estimation of the underlying survival function in a cross-sectional study without follow-up. Assuming the rate of initiation event is stationary over time, the observed current duration becomes a length-biased and multiplicatively censored counterpart of the underlying failure time of interest. We focus on two shape constraints for the underlying survival function, namely, log-concavity and convexity. The log-concavity constraint is versatile as it allows for log-concave densities, bi-log-concave distributions, increasing densities, and multi-modal densities. We establish the consistency and pointwise asymptotic distribution of the shape-constrained estimators. Specifically, the proposed estimator under log-concavity is consistent and tuning-parameter-free, thus circumventing the well-known inconsistency issue of the Grenander estimator at 0, where correction methods typically involve tuning parameters.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09658-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We study shape-constrained nonparametric estimation of the underlying survival function in a cross-sectional study without follow-up. Assuming the rate of initiation event is stationary over time, the observed current duration becomes a length-biased and multiplicatively censored counterpart of the underlying failure time of interest. We focus on two shape constraints for the underlying survival function, namely, log-concavity and convexity. The log-concavity constraint is versatile as it allows for log-concave densities, bi-log-concave distributions, increasing densities, and multi-modal densities. We establish the consistency and pointwise asymptotic distribution of the shape-constrained estimators. Specifically, the proposed estimator under log-concavity is consistent and tuning-parameter-free, thus circumventing the well-known inconsistency issue of the Grenander estimator at 0, where correction methods typically involve tuning parameters.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.