Tom Ben-Tal, Ilana Pogodin, Alexander Botvinnik, Tzuri Lifschytz, Uriel Heresco-Levy, Bernard Lerer
{"title":"Synergistic behavioral and neuroplastic effects of psilocybin-NMDAR modulator administration.","authors":"Tom Ben-Tal, Ilana Pogodin, Alexander Botvinnik, Tzuri Lifschytz, Uriel Heresco-Levy, Bernard Lerer","doi":"10.1038/s41398-025-03428-x","DOIUrl":null,"url":null,"abstract":"<p><p>The full therapeutic potential of serotonergic psychedelics (SP) in treating neuropsychiatric disorders, such as depression and schizophrenia, is limited by possible adverse effects, including perceptual disturbances and psychosis, which require administration in controlled clinical environments. This study investigates the synergistic benefits of combining psilocybin (PSIL) with N-methyl-D-aspartate receptor (NMDAR) modulators D-serine (DSER) and D-cycloserine (DCS) to enhance both efficacy and safety. Using ICR male mice, we examined head twitch response (HTR), MK-801-induced hyperlocomotion, and neuroplasticity related synaptic protein levels in the frontal cortex, hippocampus, amygdala, and striatum. Our results indicate that PSIL significantly increased HTR-a surrogate measure for hallucinogenic effects-which was reduced by the co-administration of DSER or DCS in a dose-dependent manner. Similarly, combining PSIL with DSER or DCS significantly decreased MK-801-induced hyperactivity, modeling antipsychotic effects. Neuroplasticity-related synaptic protein assays demonstrated that the PSIL-DSER combination enhanced GAP43 expression over all 4 brain examined and overall expression of the 4 assayed synaptic proteins in the hippocampus, while PSIL-DCS elevated PSD95 levels across all 4 brain regions, suggesting a synaptogenic synergy. These findings support the hypothesis that combinations of SP with NMDAR modulators could optimize the therapeutic potential of SP by mitigating adverse effects and enhancing neuroplasticity. Future studies should focus on refining administration protocols and evaluating translational applicability for broader clinical use.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"200"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166048/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03428-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
The full therapeutic potential of serotonergic psychedelics (SP) in treating neuropsychiatric disorders, such as depression and schizophrenia, is limited by possible adverse effects, including perceptual disturbances and psychosis, which require administration in controlled clinical environments. This study investigates the synergistic benefits of combining psilocybin (PSIL) with N-methyl-D-aspartate receptor (NMDAR) modulators D-serine (DSER) and D-cycloserine (DCS) to enhance both efficacy and safety. Using ICR male mice, we examined head twitch response (HTR), MK-801-induced hyperlocomotion, and neuroplasticity related synaptic protein levels in the frontal cortex, hippocampus, amygdala, and striatum. Our results indicate that PSIL significantly increased HTR-a surrogate measure for hallucinogenic effects-which was reduced by the co-administration of DSER or DCS in a dose-dependent manner. Similarly, combining PSIL with DSER or DCS significantly decreased MK-801-induced hyperactivity, modeling antipsychotic effects. Neuroplasticity-related synaptic protein assays demonstrated that the PSIL-DSER combination enhanced GAP43 expression over all 4 brain examined and overall expression of the 4 assayed synaptic proteins in the hippocampus, while PSIL-DCS elevated PSD95 levels across all 4 brain regions, suggesting a synaptogenic synergy. These findings support the hypothesis that combinations of SP with NMDAR modulators could optimize the therapeutic potential of SP by mitigating adverse effects and enhancing neuroplasticity. Future studies should focus on refining administration protocols and evaluating translational applicability for broader clinical use.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.