Lukas Zbinden, Samuel Erb, Damiano Catucci, Lars Doorenbos, Leona Hulbert, Annalisa Berzigotti, Michael Brönimann, Lukas Ebner, Andreas Christe, Verena Carola Obmann, Raphael Sznitman, Adrian Thomas Huber
{"title":"Automated quantification of T1 and T2 relaxation times in liver mpMRI using deep learning: a sequence-adaptive approach.","authors":"Lukas Zbinden, Samuel Erb, Damiano Catucci, Lars Doorenbos, Leona Hulbert, Annalisa Berzigotti, Michael Brönimann, Lukas Ebner, Andreas Christe, Verena Carola Obmann, Raphael Sznitman, Adrian Thomas Huber","doi":"10.1186/s41747-025-00596-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate a deep learning sequence-adaptive liver multiparametric MRI (mpMRI) assessment with validation in different populations using total and segmental T1 and T2 relaxation time maps.</p><p><strong>Methods: </strong>A neural network was trained to label liver segmental parenchyma and its vessels on noncontrast T1-weighted gradient-echo Dixon in-phase acquisitions on 200 liver mpMRI examinations. Then, 120 unseen liver mpMRI examinations of patients with primary sclerosing cholangitis or healthy controls were assessed by coregistering the labels to noncontrast and contrast-enhanced T1 and T2 relaxation time maps for optimization and internal testing. The algorithm was externally tested in a segmental and total liver analysis of previously unseen 65 patients with biopsy-proven liver fibrosis and 25 healthy volunteers. Measured relaxation times were compared to manual measurements using intraclass correlation coefficient (ICC) and Wilcoxon test.</p><p><strong>Results: </strong>Comparison of manual and deep learning-generated segmental areas on different T1 and T2 maps was excellent for segmental (ICC = 0.95 ± 0.1; p < 0.001) and total liver assessment (0.97 ± 0.02, p < 0.001). The resulting median of the differences between automated and manual measurements among all testing populations and liver segments was 1.8 ms for noncontrast T1 (median 835 versus 842 ms), 2.0 ms for contrast-enhanced T1 (median 518 versus 519 ms), and 0.3 ms for T2 (median 37 versus 37 ms).</p><p><strong>Conclusion: </strong>Automated quantification of liver mpMRI is highly effective across different patient populations, offering excellent reliability for total and segmental T1 and T2 maps. Its scalable, sequence-adaptive design could foster comprehensive clinical decision-making.</p><p><strong>Relevance statement: </strong>The proposed automated, sequence-adaptive algorithm for total and segmental analysis of liver mpMRI may be co-registered to any combination of parametric sequences, enabling comprehensive quantitative analysis of liver mpMRI without sequence-specific training.</p><p><strong>Key points: </strong>A deep learning-based algorithm automatically quantified segmental T1 and T2 relaxation times in liver mpMRI. The two-step approach of segmentation and co-registration allowed to assess arbitrary sequences. The algorithm demonstrated high reliability with manual reader quantification. No additional sequence-specific training is required to assess other parametric sequences. The DL algorithm has the potential to enhance individual liver phenotyping.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"58"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-025-00596-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To evaluate a deep learning sequence-adaptive liver multiparametric MRI (mpMRI) assessment with validation in different populations using total and segmental T1 and T2 relaxation time maps.
Methods: A neural network was trained to label liver segmental parenchyma and its vessels on noncontrast T1-weighted gradient-echo Dixon in-phase acquisitions on 200 liver mpMRI examinations. Then, 120 unseen liver mpMRI examinations of patients with primary sclerosing cholangitis or healthy controls were assessed by coregistering the labels to noncontrast and contrast-enhanced T1 and T2 relaxation time maps for optimization and internal testing. The algorithm was externally tested in a segmental and total liver analysis of previously unseen 65 patients with biopsy-proven liver fibrosis and 25 healthy volunteers. Measured relaxation times were compared to manual measurements using intraclass correlation coefficient (ICC) and Wilcoxon test.
Results: Comparison of manual and deep learning-generated segmental areas on different T1 and T2 maps was excellent for segmental (ICC = 0.95 ± 0.1; p < 0.001) and total liver assessment (0.97 ± 0.02, p < 0.001). The resulting median of the differences between automated and manual measurements among all testing populations and liver segments was 1.8 ms for noncontrast T1 (median 835 versus 842 ms), 2.0 ms for contrast-enhanced T1 (median 518 versus 519 ms), and 0.3 ms for T2 (median 37 versus 37 ms).
Conclusion: Automated quantification of liver mpMRI is highly effective across different patient populations, offering excellent reliability for total and segmental T1 and T2 maps. Its scalable, sequence-adaptive design could foster comprehensive clinical decision-making.
Relevance statement: The proposed automated, sequence-adaptive algorithm for total and segmental analysis of liver mpMRI may be co-registered to any combination of parametric sequences, enabling comprehensive quantitative analysis of liver mpMRI without sequence-specific training.
Key points: A deep learning-based algorithm automatically quantified segmental T1 and T2 relaxation times in liver mpMRI. The two-step approach of segmentation and co-registration allowed to assess arbitrary sequences. The algorithm demonstrated high reliability with manual reader quantification. No additional sequence-specific training is required to assess other parametric sequences. The DL algorithm has the potential to enhance individual liver phenotyping.