Radial basis function-assisted global + local optimization algorithm for polarization-maintaining hollow-core anti-resonant fiber.

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-06-02 DOI:10.1364/OE.566622
Lina Guo, Xueqin Sun, Yu Li, Sukai Wang, Ping Chen
{"title":"Radial basis function-assisted global + local optimization algorithm for polarization-maintaining hollow-core anti-resonant fiber.","authors":"Lina Guo, Xueqin Sun, Yu Li, Sukai Wang, Ping Chen","doi":"10.1364/OE.566622","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional evolutionary algorithms require a large number of computations for fiber optimization. This paper proposes an enhanced radial basis function-based global and local optimization algorithm to improve efficiency. The algorithm incorporates a surrogate model-based pre-screening module, which integrates both global and local models to improve the exploration and exploitation of the search space. It also employs a local model-assisted search strategy to refine promising regions. A comparative analysis with several other optimization methods is provided. To optimize two low-loss, polarization-maintaining fiber structures, the algorithm needs just 100 evaluations per model, decreasing the computational effort by at least an order of magnitude compared to conventional methods. The best-achieved birefringence is 1 × 10<sup>-4</sup>, with a loss of 0.3 dB/m.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 11","pages":"23075-23094"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.566622","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional evolutionary algorithms require a large number of computations for fiber optimization. This paper proposes an enhanced radial basis function-based global and local optimization algorithm to improve efficiency. The algorithm incorporates a surrogate model-based pre-screening module, which integrates both global and local models to improve the exploration and exploitation of the search space. It also employs a local model-assisted search strategy to refine promising regions. A comparative analysis with several other optimization methods is provided. To optimize two low-loss, polarization-maintaining fiber structures, the algorithm needs just 100 evaluations per model, decreasing the computational effort by at least an order of magnitude compared to conventional methods. The best-achieved birefringence is 1 × 10-4, with a loss of 0.3 dB/m.

保偏空心芯抗谐振光纤径向基函数辅助全局+局部优化算法。
传统的进化算法需要大量的计算量来进行光纤优化。为了提高效率,本文提出了一种增强的基于径向基函数的全局和局部优化算法。该算法结合了基于代理模型的预筛选模块,将全局模型和局部模型相结合,提高了对搜索空间的探索和利用。它还采用局部模型辅助搜索策略来优化有希望的区域。并与其他几种优化方法进行了比较分析。为了优化两种低损耗、保持偏振的光纤结构,该算法只需要对每个模型进行100次评估,与传统方法相比,计算工作量至少减少了一个数量级。最佳双折射值为1 × 10-4,损耗为0.3 dB/m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信