Mohammad-Reza Ghovanloo, Sidharth Tyagi, Peng Zhao, Emre Kiziltug, Mark Estacion, Philip R Effraim, Sulayman D Dib-Hajj, Stephen G Waxman
{"title":"High-throughput multiplex voltage-clamp/current-clamp evaluation of acutely isolated neurons.","authors":"Mohammad-Reza Ghovanloo, Sidharth Tyagi, Peng Zhao, Emre Kiziltug, Mark Estacion, Philip R Effraim, Sulayman D Dib-Hajj, Stephen G Waxman","doi":"10.1038/s41596-025-01194-0","DOIUrl":null,"url":null,"abstract":"<p><p>The patch-clamp technique remains the gold-standard for the investigation of excitable cells. However, the manual implementation of this technique is slow and low throughput. While recently developed high-throughput robotic patch-clamp methods have proven valuable for drug screening, they have predominantly focused on investigating receptors and channels overexpressed in heterologous cell lines. We recently developed an automated high-throughput patch-clamp approach that enables the simultaneous and unbiased analysis of acutely dissociated neurons in their native state. To analyze and manage the large and complex datasets resulting from this methodology, we have also developed open-source software with an easy-to-use graphical user interface to fit data from each neuron with appropriate biophysical equations to functionally characterize each individual neuron. Here we describe a protocol that provides a streamlined set of procedures, including (1) the dissociation and isolation of neurons from intact tissue; (2) the designing and performing of patch-clamp experiments on the robotic system; and (3) the analysis of data using predetermined, unbiased filtration criteria. This methodology can be used for diverse applications ranging from the assessment of neuronal biophysics to drug development. The protocol requires 6-18 h including cell preparation, experimental execution and analysis of the generated data. Graduate-student-level expertise in animal dissection, electrophysiology and biophysics is required.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01194-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The patch-clamp technique remains the gold-standard for the investigation of excitable cells. However, the manual implementation of this technique is slow and low throughput. While recently developed high-throughput robotic patch-clamp methods have proven valuable for drug screening, they have predominantly focused on investigating receptors and channels overexpressed in heterologous cell lines. We recently developed an automated high-throughput patch-clamp approach that enables the simultaneous and unbiased analysis of acutely dissociated neurons in their native state. To analyze and manage the large and complex datasets resulting from this methodology, we have also developed open-source software with an easy-to-use graphical user interface to fit data from each neuron with appropriate biophysical equations to functionally characterize each individual neuron. Here we describe a protocol that provides a streamlined set of procedures, including (1) the dissociation and isolation of neurons from intact tissue; (2) the designing and performing of patch-clamp experiments on the robotic system; and (3) the analysis of data using predetermined, unbiased filtration criteria. This methodology can be used for diverse applications ranging from the assessment of neuronal biophysics to drug development. The protocol requires 6-18 h including cell preparation, experimental execution and analysis of the generated data. Graduate-student-level expertise in animal dissection, electrophysiology and biophysics is required.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.