Huiyan Ji, Wanwan Jiang, Juan Zhang, Mengdi Liu, Danhua Su, Jiaxin Lei, Lingyi Li, Ming Zheng, Ting Liu, Zhichun Liu, Qinghua Cao, Lin Xu, Sidong Xiong, Zhenke Wen
{"title":"ENPP1 governs the metabolic regulation of effector T cells in autoimmunity by detecting cytosolic mitochondrial DNA.","authors":"Huiyan Ji, Wanwan Jiang, Juan Zhang, Mengdi Liu, Danhua Su, Jiaxin Lei, Lingyi Li, Ming Zheng, Ting Liu, Zhichun Liu, Qinghua Cao, Lin Xu, Sidong Xiong, Zhenke Wen","doi":"10.1016/j.celrep.2025.115851","DOIUrl":null,"url":null,"abstract":"<p><p>T cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE), yet the underlying molecular mechanisms governing their fate remain elusive. Here, we identify cytosolic mitochondrial DNA (mtDNA) as an intrinsic trigger for driving effector T cell differentiation in patients with SLE. Specifically, accumulated cytosolic mtDNA is sensed by ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which enhances the transcription of GLUT1 and glycolysis in SLE T cells. This metabolic shift reduces lipogenesis and depletes free fatty acids (FFAs), impairing the N-myristylation and lysosomal localization of AMP-activated protein kinase (AMPK). Inactive AMPK fails to restrain mammalian target of rapamycin complex 1 (mTORC1), leading to its hyperactivation and driving the mal-differentiation of effector T cells. Consequently, interventions targeting ENPP1, glycolysis, AMPK, and mTORC1 effectively inhibit the generation of immunoglobulin (Ig)G anti-double-stranded DNA (dsDNA) and the progression of lupus nephritis in humanized SLE chimeras. Overall, our findings uncover an mtDNA-ENPP1-metabolic axis that governs effector T cell fate in autoimmunity.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 6","pages":"115851"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115851","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
T cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE), yet the underlying molecular mechanisms governing their fate remain elusive. Here, we identify cytosolic mitochondrial DNA (mtDNA) as an intrinsic trigger for driving effector T cell differentiation in patients with SLE. Specifically, accumulated cytosolic mtDNA is sensed by ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which enhances the transcription of GLUT1 and glycolysis in SLE T cells. This metabolic shift reduces lipogenesis and depletes free fatty acids (FFAs), impairing the N-myristylation and lysosomal localization of AMP-activated protein kinase (AMPK). Inactive AMPK fails to restrain mammalian target of rapamycin complex 1 (mTORC1), leading to its hyperactivation and driving the mal-differentiation of effector T cells. Consequently, interventions targeting ENPP1, glycolysis, AMPK, and mTORC1 effectively inhibit the generation of immunoglobulin (Ig)G anti-double-stranded DNA (dsDNA) and the progression of lupus nephritis in humanized SLE chimeras. Overall, our findings uncover an mtDNA-ENPP1-metabolic axis that governs effector T cell fate in autoimmunity.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.