Bright-light treatment ameliorates motor and non-motor deficits through distinct visual circuits in a mouse model of Parkinson's disease.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Xiaodan Huang, Shengnan Wang, Zhiqing Chen, Wenna Qu, Li Song, Zhengfang Hu, Yue Xi, Yan Yang, Weng-Hei Hong, Song Lin, Kwok-Fai So, Yulong Li, Lu Huang, Qian Tao, Chaoran Ren
{"title":"Bright-light treatment ameliorates motor and non-motor deficits through distinct visual circuits in a mouse model of Parkinson's disease.","authors":"Xiaodan Huang, Shengnan Wang, Zhiqing Chen, Wenna Qu, Li Song, Zhengfang Hu, Yue Xi, Yan Yang, Weng-Hei Hong, Song Lin, Kwok-Fai So, Yulong Li, Lu Huang, Qian Tao, Chaoran Ren","doi":"10.1016/j.celrep.2025.115865","DOIUrl":null,"url":null,"abstract":"<p><p>Light has a profound impact on non-visual functions, and clinical evidence suggests bright-light therapy's effectiveness in alleviating motor and non-motor symptoms of Parkinson's disease (PD). However, the neural mechanisms underlying these effects remain unclear. Here, we demonstrate that bright-light treatment alleviates PD symptoms in mice via distinct visual circuits. Specifically, bright-light signals transmitted by the ventral lateral geniculate nucleus alleviate non-motor symptoms, such as depressive-like behaviors and spatial memory deficits. Conversely, the improvement in motor symptoms with bright-light treatment depends on a separate, disynaptic visual pathway that connects the superficial layers of the superior colliculus to the substantia nigra pars compacta (SNc). Notably, in this pathway, bright-light signals enhance the bursting activity of SNc dopaminergic neurons by upregulating HCN2 expression, a mechanism essential for motor improvements. These findings provide valuable insights into the neural mechanisms by which bright-light therapy benefits PD.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 6","pages":"115865"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115865","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Light has a profound impact on non-visual functions, and clinical evidence suggests bright-light therapy's effectiveness in alleviating motor and non-motor symptoms of Parkinson's disease (PD). However, the neural mechanisms underlying these effects remain unclear. Here, we demonstrate that bright-light treatment alleviates PD symptoms in mice via distinct visual circuits. Specifically, bright-light signals transmitted by the ventral lateral geniculate nucleus alleviate non-motor symptoms, such as depressive-like behaviors and spatial memory deficits. Conversely, the improvement in motor symptoms with bright-light treatment depends on a separate, disynaptic visual pathway that connects the superficial layers of the superior colliculus to the substantia nigra pars compacta (SNc). Notably, in this pathway, bright-light signals enhance the bursting activity of SNc dopaminergic neurons by upregulating HCN2 expression, a mechanism essential for motor improvements. These findings provide valuable insights into the neural mechanisms by which bright-light therapy benefits PD.

在帕金森病小鼠模型中,强光治疗通过不同的视觉回路改善了运动和非运动缺陷。
光对非视觉功能有深远的影响,临床证据表明,强光疗法在缓解帕金森病(PD)的运动和非运动症状方面是有效的。然而,这些影响背后的神经机制尚不清楚。在这里,我们证明了强光治疗通过不同的视觉回路减轻了小鼠的PD症状。具体来说,腹侧膝状外侧核传递的亮光信号可以缓解非运动症状,如抑郁样行为和空间记忆缺陷。相反,强光治疗对运动症状的改善依赖于连接上丘浅层和致密黑质(SNc)的单独的、无突触的视觉通路。值得注意的是,在这条通路中,明亮的光信号通过上调HCN2表达来增强SNc多巴胺能神经元的破裂活性,这是运动改善的重要机制。这些发现为强光治疗对帕金森病的神经机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信