Hyper-parameter optimization for enhanced machine learning-based landslide susceptibility mapping.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Moziihrii Ado, Khwairakpam Amitab
{"title":"Hyper-parameter optimization for enhanced machine learning-based landslide susceptibility mapping.","authors":"Moziihrii Ado, Khwairakpam Amitab","doi":"10.1007/s11356-025-36615-w","DOIUrl":null,"url":null,"abstract":"<p><p>Landslides pose a substantial threat to life and property, and landslide susceptibility mapping is crucial for effective disaster management. Machine learning (ML) techniques can efficiently generate landslide susceptibility maps (LSMs) to identify high-risk areas. However, the performance of ML models relies on the careful tuning of hyper-parameters. This study focuses on hyper-parameter optimization (HPO) techniques to enhance the accuracy and reliability of ML-based landslide susceptibility mapping. The study compares different HPO methods like grid search (GS), random search (RS), Bayesian optimization (BO), hyperband, and iterative race (iRace), with a particular emphasis on introducing the iRace optimization technique in landslide susceptibility mapping studies. Different ML models like CART, SVM, RF, XGBoost, and LightGBM were used to explore the influence of the HPO techniques. The ML-HPO techniques are assessed using metrics like AUC, accuracy, <math><mi>κ</mi></math> , precision, recall, and F1-score, utilizing data from the northeastern Indian states. The best ML-HPO combinations for each state are Arunachal Pradesh (GS-LightGBM ), Assam (iRace-RF and RS-RF), Manipur (GS-XGBoost), Meghalaya (BO-RF), Mizoram (iRace-RF), Nagaland (Hyperband-RF), Sikkim (BO-RF), and Tripura (BO-XGBoost). Results suggest GS, iRace, and BO are effective HPO techniques. The final LSM of northeast India integrates the susceptibility map generated using the best ML-HPO combinations for each state. The map can enable effective mitigation strategies and land-use planning, ultimately reducing the impact of landslides in the region.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36615-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Landslides pose a substantial threat to life and property, and landslide susceptibility mapping is crucial for effective disaster management. Machine learning (ML) techniques can efficiently generate landslide susceptibility maps (LSMs) to identify high-risk areas. However, the performance of ML models relies on the careful tuning of hyper-parameters. This study focuses on hyper-parameter optimization (HPO) techniques to enhance the accuracy and reliability of ML-based landslide susceptibility mapping. The study compares different HPO methods like grid search (GS), random search (RS), Bayesian optimization (BO), hyperband, and iterative race (iRace), with a particular emphasis on introducing the iRace optimization technique in landslide susceptibility mapping studies. Different ML models like CART, SVM, RF, XGBoost, and LightGBM were used to explore the influence of the HPO techniques. The ML-HPO techniques are assessed using metrics like AUC, accuracy, κ , precision, recall, and F1-score, utilizing data from the northeastern Indian states. The best ML-HPO combinations for each state are Arunachal Pradesh (GS-LightGBM ), Assam (iRace-RF and RS-RF), Manipur (GS-XGBoost), Meghalaya (BO-RF), Mizoram (iRace-RF), Nagaland (Hyperband-RF), Sikkim (BO-RF), and Tripura (BO-XGBoost). Results suggest GS, iRace, and BO are effective HPO techniques. The final LSM of northeast India integrates the susceptibility map generated using the best ML-HPO combinations for each state. The map can enable effective mitigation strategies and land-use planning, ultimately reducing the impact of landslides in the region.

基于机器学习的滑坡易感性映射超参数优化。
滑坡对生命财产构成重大威胁,滑坡易感性测绘对有效的灾害管理至关重要。机器学习(ML)技术可以有效地生成滑坡易感性图(lsm)来识别高风险区域。然而,机器学习模型的性能依赖于超参数的仔细调优。研究了超参数优化(HPO)技术,以提高基于ml的滑坡敏感性制图的准确性和可靠性。本研究比较了网格搜索(GS)、随机搜索(RS)、贝叶斯优化(BO)、超带优化(hyperband)和迭代竞赛(iRace)等不同的HPO方法,重点介绍了iRace优化技术在滑坡易感性制图研究中的应用。使用CART、SVM、RF、XGBoost和LightGBM等不同的ML模型来探讨HPO技术的影响。利用印度东北部各州的数据,使用AUC、准确性、κ、精度、召回率和f1分数等指标对ML-HPO技术进行评估。每个邦的最佳ML-HPO组合是** (GS-LightGBM),阿萨姆邦(伊拉克- rf和RS-RF),曼尼普尔邦(GS-XGBoost),梅加拉亚邦(BO-RF),米索拉姆邦(伊拉克- rf),那加兰邦(Hyperband-RF),锡金(BO-RF)和特里普拉邦(BO-XGBoost)。结果表明,GS、iRace和BO是有效的HPO技术。印度东北部最终的LSM整合了每个邦使用最佳ML-HPO组合生成的敏感性图。该地图有助于实施有效的缓解战略和土地利用规划,最终减少该地区山体滑坡的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信