Predicting peroxisome proliferator-activated receptor gamma potency of small molecules: a synergistic consensus model and deep learning binding affinity approach powered by Enalos Cloud Platform.
Maria Antoniou, Konstantinos D Papavasileiou, Antreas Tsoumanis, Georgia Melagraki, Antreas Afantitis
{"title":"Predicting peroxisome proliferator-activated receptor gamma potency of small molecules: a synergistic consensus model and deep learning binding affinity approach powered by Enalos Cloud Platform.","authors":"Maria Antoniou, Konstantinos D Papavasileiou, Antreas Tsoumanis, Georgia Melagraki, Antreas Afantitis","doi":"10.1007/s11030-025-11230-6","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptor gamma (PPARγ) antagonists play a critical role in regulating glucose and lipid metabolism, making them promising candidates for antidiabetic therapies. To support the ongoing search of such compounds, this study introduces two advanced in silico models for predicting the binding affinity and biological activity of small molecules targeting PPARγ. A neural network was developed to classify compounds as strong or weak binders based on molecular docking scores. Additionally, a consensus model combining Random Forest, Support Vector Machine, and k-Nearest Neighbours algorithms was implemented to predict the antagonistic activity of small molecules. Both models were rigorously validated according to the Organisation for Economic Co-operation and Development (OECD) guidelines, to ensure generalisability and sufficient efficiency in detecting the minority class (active antagonists). Mechanistic insights into how key molecular descriptors influence PPARγ activity were discussed in a posteriori interpretation. A case study involving 34 prioritised per- and polyfluoroalkyl substances (PFAS) were screened with the developed workflows to demonstrate their practical application. The models, integrated into user-friendly web applications via the Enalos Cloud Platform, enable accessible and efficient virtual screening, supporting the discovery of PPARγ modulators.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11230-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) antagonists play a critical role in regulating glucose and lipid metabolism, making them promising candidates for antidiabetic therapies. To support the ongoing search of such compounds, this study introduces two advanced in silico models for predicting the binding affinity and biological activity of small molecules targeting PPARγ. A neural network was developed to classify compounds as strong or weak binders based on molecular docking scores. Additionally, a consensus model combining Random Forest, Support Vector Machine, and k-Nearest Neighbours algorithms was implemented to predict the antagonistic activity of small molecules. Both models were rigorously validated according to the Organisation for Economic Co-operation and Development (OECD) guidelines, to ensure generalisability and sufficient efficiency in detecting the minority class (active antagonists). Mechanistic insights into how key molecular descriptors influence PPARγ activity were discussed in a posteriori interpretation. A case study involving 34 prioritised per- and polyfluoroalkyl substances (PFAS) were screened with the developed workflows to demonstrate their practical application. The models, integrated into user-friendly web applications via the Enalos Cloud Platform, enable accessible and efficient virtual screening, supporting the discovery of PPARγ modulators.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;