Structural adaptability of SARS-CoV-2 Nsp1 with the host network.

IF 2.4 4区 生物学 Q3 BIOPHYSICS
Monikaben Padariya, Ted Hupp, Umesh Kalathiya
{"title":"Structural adaptability of SARS-CoV-2 Nsp1 with the host network.","authors":"Monikaben Padariya, Ted Hupp, Umesh Kalathiya","doi":"10.1007/s00249-025-01762-y","DOIUrl":null,"url":null,"abstract":"<p><p>The SARS-CoV-2 non-structural protein 1 (Nsp1) acts at multiple points toward the host cell to trigger its mRNA cleavage and decay. Nsp1 is found binding with the 40S ribosomal subunit and inhibiting the translation process, as well as docking with different cyclophilins. Herein, we evaluated the structural physicochemical properties of SARS-CoV-2 Nsp1 protein implementing different computational techniques. The Nsp1 was found to form a structured α-helical C-terminal region, following a conformational switch at residue S166 that is necessary for binding the 40S ribosome subunit. Similarly, the presence of cyclophilins stabilizes the Nsp1 C-terminus making a tilt movement at position 166. In the 40S ribosome-Nsp1 machinery, both the ribosomal uS3 and eS30 components were found equally interacting with Nsp1, which guided construction of their pharmacophores. Among a set of studied cyclophilins, FKBP1B showed the highest affinity with Nsp1 and PPIH made least interactions. The majority of cyclophilins dock to the conserved Nsp1 loop or linker region, which connects the C-terminus to the central domain. Our findings revealed that Nsp1 has a versatile C-terminus region which changes its conformations with respect to its host binding partner. Identified novel binding sites within the Nsp1 can assist in understanding its networking (in current or future such infections), as well as support drug discovery programs aimed at targeting the coronavirus family.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01762-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The SARS-CoV-2 non-structural protein 1 (Nsp1) acts at multiple points toward the host cell to trigger its mRNA cleavage and decay. Nsp1 is found binding with the 40S ribosomal subunit and inhibiting the translation process, as well as docking with different cyclophilins. Herein, we evaluated the structural physicochemical properties of SARS-CoV-2 Nsp1 protein implementing different computational techniques. The Nsp1 was found to form a structured α-helical C-terminal region, following a conformational switch at residue S166 that is necessary for binding the 40S ribosome subunit. Similarly, the presence of cyclophilins stabilizes the Nsp1 C-terminus making a tilt movement at position 166. In the 40S ribosome-Nsp1 machinery, both the ribosomal uS3 and eS30 components were found equally interacting with Nsp1, which guided construction of their pharmacophores. Among a set of studied cyclophilins, FKBP1B showed the highest affinity with Nsp1 and PPIH made least interactions. The majority of cyclophilins dock to the conserved Nsp1 loop or linker region, which connects the C-terminus to the central domain. Our findings revealed that Nsp1 has a versatile C-terminus region which changes its conformations with respect to its host binding partner. Identified novel binding sites within the Nsp1 can assist in understanding its networking (in current or future such infections), as well as support drug discovery programs aimed at targeting the coronavirus family.

SARS-CoV-2 Nsp1与主机网络的结构适应性
SARS-CoV-2非结构蛋白1 (Nsp1)在宿主细胞的多个点上起作用,触发其mRNA的切割和衰变。发现Nsp1与40S核糖体亚基结合,抑制翻译过程,并与不同的亲环蛋白对接。在此,我们利用不同的计算技术评估了SARS-CoV-2 Nsp1蛋白的结构理化性质。研究发现,Nsp1在结合40S核糖体亚基所必需的S166残基构象开关之后,形成了一个结构化的α-螺旋c端区域。同样,亲环蛋白的存在使Nsp1 c端在166位发生倾斜运动。在40S核糖体-Nsp1机制中,发现核糖体uS3和eS30组分均与Nsp1相互作用,这指导了其药效团的构建。在研究的一组亲环蛋白中,FKBP1B与Nsp1的亲和力最高,而PPIH的相互作用最小。大多数亲环蛋白停靠在保守的Nsp1环或连接器区域,该区域将c端连接到中心结构域。我们的研究结果表明,Nsp1具有一个多功能的c端区域,可以改变其与宿主结合伙伴的构象。在Nsp1中发现的新结合位点可以帮助理解其网络(在当前或未来的此类感染中),并支持针对冠状病毒家族的药物发现计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信