Bin Ye, Yingting Pei, Henian Li, Yuqi Jiang, Wenying Jin, Yueqiu Gao, Wen Liu, Xin Guan, Yu Qiao, Xu Gao, Yanfen Zhang, Ning Ma, Hao Chang
{"title":"PINK1 Deficiency Facilitates Palmitic Acid-Induced Inflammation by Disrupting Mitochondrial Function to Activate mtDNA-cGAS-STING Signaling","authors":"Bin Ye, Yingting Pei, Henian Li, Yuqi Jiang, Wenying Jin, Yueqiu Gao, Wen Liu, Xin Guan, Yu Qiao, Xu Gao, Yanfen Zhang, Ning Ma, Hao Chang","doi":"10.1002/cbf.70092","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Metabolic cells exhibit low-grade chronic inflsammation characterized by excessive production and secretion of proinflammatory cytokines and chemokines in response to overnutrition and energy excess. Mitochondrial dysfunction is closely associated with metabolic inflammation. PINK1 (phosphatase and tensin homology-induced putative kinase 1) is a crucial pathway controlling mitochondrial autophagy, essential for maintaining mitochondrial quality control and metabolic homeostasis. The aim of this study was to investigate the role of PINK1 in metabolic inflammation. Our findings indicate that in adipocytes, palmitic acid (PA) activates the expression of PINK1. Additionally, knockdown of <i>PINK1</i> exacerbates PA-induced adipocyte inflammation. Mechanistically, <i>PINK1</i> deficiency impairs mitochondrial function, leading to the release of mtDNA and further activation of the cGAS-STING pathway. Therefore, targeting mitochondrial autophagy in adipocytes and the cGAS-STING pathway may represent effective approaches to alleviate the chronic inflammation associated with obesity and related metabolic disorders.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70092","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic cells exhibit low-grade chronic inflsammation characterized by excessive production and secretion of proinflammatory cytokines and chemokines in response to overnutrition and energy excess. Mitochondrial dysfunction is closely associated with metabolic inflammation. PINK1 (phosphatase and tensin homology-induced putative kinase 1) is a crucial pathway controlling mitochondrial autophagy, essential for maintaining mitochondrial quality control and metabolic homeostasis. The aim of this study was to investigate the role of PINK1 in metabolic inflammation. Our findings indicate that in adipocytes, palmitic acid (PA) activates the expression of PINK1. Additionally, knockdown of PINK1 exacerbates PA-induced adipocyte inflammation. Mechanistically, PINK1 deficiency impairs mitochondrial function, leading to the release of mtDNA and further activation of the cGAS-STING pathway. Therefore, targeting mitochondrial autophagy in adipocytes and the cGAS-STING pathway may represent effective approaches to alleviate the chronic inflammation associated with obesity and related metabolic disorders.
期刊介绍:
Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease.
The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.