Method Dependence in Thermal Conductivity and Aerodynamic Roughness Length Estimates on a Debris-Covered Glacier

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Vicente Melo-Velasco, Evan Miles, Michael McCarthy, Thomas E. Shaw, Catriona Fyffe, Adrià Fontrodona-Bach, Francesca Pellicciotti
{"title":"Method Dependence in Thermal Conductivity and Aerodynamic Roughness Length Estimates on a Debris-Covered Glacier","authors":"Vicente Melo-Velasco,&nbsp;Evan Miles,&nbsp;Michael McCarthy,&nbsp;Thomas E. Shaw,&nbsp;Catriona Fyffe,&nbsp;Adrià Fontrodona-Bach,&nbsp;Francesca Pellicciotti","doi":"10.1029/2025JF008360","DOIUrl":null,"url":null,"abstract":"<p>Rock debris partially covers glaciers worldwide, with varying extents and distributions, and controls sub-debris melt rates by modifying energy transfer from the atmosphere to the ice. Two key physical properties controlling this energy exchange are thermal conductivity <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation> $(k)$</annotation>\n </semantics></math> and aerodynamic roughness length <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({z}_{0}\\right)$</annotation>\n </semantics></math>. Accurate representation of these properties in energy-balance models is critical for understanding climate-glacier interactions and predicting the behavior of debris-covered glaciers. However, <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> have been derived at very few sites from limited local measurements, using different approaches, and most model applications rely on values reported from these few sites and studies. We derive <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> using established and modified approaches from data at three locations on Pirámide Glacier in the central Chilean Andes. By comparing methods and evaluating melt simulated with an energy-balance model, we reveal substantial differences between approaches. These lead to discrepancies between ice melt from energy-balance simulations and observed data, and highlight the impact of method choice on calculated ice melt. Optimizing <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> against measured melt appears a viable approach to constrain melt simulations. Determining <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> seems less critical, as it has a smaller impact on total melt. Profile aerodynamic method measurements for estimating <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math>, despite higher costs, are independent of ice melt calculations. The large, unexpected differences between methods indicate a substantial knowledge gap. The fact that field-derived <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> fail to work well in energy-balance models, suggests that model values represent bulk properties distinct from theoretical field measurements. Addressing this gap is essential for improving glacier melt predictions.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JF008360","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JF008360","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rock debris partially covers glaciers worldwide, with varying extents and distributions, and controls sub-debris melt rates by modifying energy transfer from the atmosphere to the ice. Two key physical properties controlling this energy exchange are thermal conductivity ( k ) $(k)$ and aerodynamic roughness length z 0 $\left({z}_{0}\right)$ . Accurate representation of these properties in energy-balance models is critical for understanding climate-glacier interactions and predicting the behavior of debris-covered glaciers. However, k $k$ and z 0 ${z}_{0}$ have been derived at very few sites from limited local measurements, using different approaches, and most model applications rely on values reported from these few sites and studies. We derive k $k$ and z 0 ${z}_{0}$ using established and modified approaches from data at three locations on Pirámide Glacier in the central Chilean Andes. By comparing methods and evaluating melt simulated with an energy-balance model, we reveal substantial differences between approaches. These lead to discrepancies between ice melt from energy-balance simulations and observed data, and highlight the impact of method choice on calculated ice melt. Optimizing k $k$ against measured melt appears a viable approach to constrain melt simulations. Determining z 0 ${z}_{0}$ seems less critical, as it has a smaller impact on total melt. Profile aerodynamic method measurements for estimating z 0 ${z}_{0}$ , despite higher costs, are independent of ice melt calculations. The large, unexpected differences between methods indicate a substantial knowledge gap. The fact that field-derived k $k$ and z 0 ${z}_{0}$ fail to work well in energy-balance models, suggests that model values represent bulk properties distinct from theoretical field measurements. Addressing this gap is essential for improving glacier melt predictions.

碎屑覆盖冰川热导率和空气动力学粗糙度估算的方法依赖
岩石碎屑部分覆盖了世界范围内不同程度和分布的冰川,并通过改变从大气到冰的能量转移来控制亚碎屑融化速率。控制这种能量交换的两个关键物理性质是热导率(k)$ (k)$和气动粗糙度长度z0美元\离开({z} _ {0} \ )$ .在能量平衡模型中准确表示这些特性对于理解气候-冰川相互作用和预测碎屑覆盖冰川的行为至关重要。然而,k$ k$和z0 ${z}_{0}$是在极少数地点通过有限的局部测量,使用不同的方法得出的,并且大多数模型应用依赖于这些少数地点和研究报告的值。我们从智利中部安第斯山脉Pirámide冰川上三个地点的数据中,利用已建立的和改进的方法推导出k$ k$和z0 ${z}_{0}$。通过比较方法和评估与能量平衡模型模拟的熔体,我们揭示了方法之间的实质性差异。这导致能量平衡模拟的冰融化与观测数据之间存在差异,并突出了方法选择对计算冰融化的影响。根据实测熔体优化k$ k$似乎是约束熔体模拟的可行方法。确定z0 ${z}_{0}$似乎不那么重要,因为它对总熔体的影响较小。剖面气动方法测量估算z0 ${z}_{0}$,尽管成本较高,但与冰融化计算无关。方法之间巨大的、意想不到的差异表明存在实质性的知识差距。现场导出的k$ k$和z0 ${z}_{0}$在能量平衡模型中不能很好地工作,这表明模型值代表了与理论现场测量不同的体性质。解决这一差距对于改善冰川融化预测至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信