Highly siderophile element nano-nuggets in Wabar impact glass

IF 2.4 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Axel Wittmann, Marc Biren
{"title":"Highly siderophile element nano-nuggets in Wabar impact glass","authors":"Axel Wittmann,&nbsp;Marc Biren","doi":"10.1111/maps.14350","DOIUrl":null,"url":null,"abstract":"<p>Circa 300 years ago, a ~15-m iron asteroid impacted sand dunes in the Empty Quarter of Saudi Arabia, creating the Wabar craters and fragments of the IIIAB Wabar iron meteorite. A significant portion of the asteroid dissolved into the sand, forming a wide range of impactites including glassy Wabar pearls, dumbbells, and dark scoria-like material. In this study, we report the discovery of ~60–1400 nm nuggets of refractory highly siderophile elements (HSEs) dominated by Pt, Os, Ru, Ir, Re, and Rh in Wabar impact glass. These HSEs were distributed in the IIIAB iron at low parts per million and became concentrated up to ×44,000 in the nano-nuggets. The petrologic context of the nano-nuggets is consistent with the rapid dissolution of the iron meteorite into the dune sand target triggered by the impact shockwave, followed by the separation of immiscible HSEs from the silicate impact melt at 1900°C to over 2700°C. This research provides new insights into the formation processes of HSE nano-nuggets in impact glass and predicts the potential for similar findings at other impact sites.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 6","pages":"1289-1301"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14350","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Circa 300 years ago, a ~15-m iron asteroid impacted sand dunes in the Empty Quarter of Saudi Arabia, creating the Wabar craters and fragments of the IIIAB Wabar iron meteorite. A significant portion of the asteroid dissolved into the sand, forming a wide range of impactites including glassy Wabar pearls, dumbbells, and dark scoria-like material. In this study, we report the discovery of ~60–1400 nm nuggets of refractory highly siderophile elements (HSEs) dominated by Pt, Os, Ru, Ir, Re, and Rh in Wabar impact glass. These HSEs were distributed in the IIIAB iron at low parts per million and became concentrated up to ×44,000 in the nano-nuggets. The petrologic context of the nano-nuggets is consistent with the rapid dissolution of the iron meteorite into the dune sand target triggered by the impact shockwave, followed by the separation of immiscible HSEs from the silicate impact melt at 1900°C to over 2700°C. This research provides new insights into the formation processes of HSE nano-nuggets in impact glass and predicts the potential for similar findings at other impact sites.

Wabar冲击玻璃中的高亲铁元素纳米块
大约300年前,一颗直径约15米的铁小行星撞击了沙特阿拉伯空旷地区的沙丘,形成了Wabar陨石坑和IIIAB Wabar铁陨石的碎片。小行星的很大一部分溶解在沙子中,形成了各种各样的撞击物,包括玻璃状的瓦巴尔珍珠、哑铃和黑色的碎屑状物质。在这项研究中,我们报告了在Wabar冲击玻璃中发现了~ 60-1400 nm的以Pt, Os, Ru, Ir, Re和Rh为主的难熔高亲铁元素(hsse)块。这些HSEs以百万分之低的浓度分布在IIIAB铁中,并在纳米块体中浓缩至×44,000。纳米块的岩石学背景与铁陨石在撞击冲击波触发下快速溶解到沙丘沙靶中,随后在1900℃至2700℃以上从硅酸盐撞击熔体中分离出不混溶的HSEs相一致。这项研究为撞击玻璃中HSE纳米块的形成过程提供了新的见解,并预测了在其他撞击地点发现类似结果的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meteoritics & Planetary Science
Meteoritics & Planetary Science 地学天文-地球化学与地球物理
CiteScore
3.90
自引率
31.80%
发文量
121
审稿时长
3 months
期刊介绍: First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信