Stu Webb, Clive R. Neal, Bridget Guiza, James M. D. Day
{"title":"Textural coarsening as the cause for impact-melt like plagioclase crystal size distributions and subtle layering in high-Al basalt 14053","authors":"Stu Webb, Clive R. Neal, Bridget Guiza, James M. D. Day","doi":"10.1111/maps.14362","DOIUrl":null,"url":null,"abstract":"<p>High-Al Apollo 14 basalt 14053 has been identified as an endogenous partial melt product from the lunar interior based on geochemical analyses, specifically low abundances of highly siderophile elements, but exhibits textural characteristics similar to those of impact melts. Prior studies of this sample have described mineralogical differences between “interior” and “exterior” portions, which have been attributed to exposure at the lunar surface and subsequent metamorphism through subsolidus reheating within or in proximity to an impact-ejecta blanket. It has been demonstrated that quantitative textural analysis is a useful tool for distinguishing between lunar rocks altered by impact processes and those produced by endogenic magmatic processes. Such an approach is used in this study to analyze multiple thin sections cut from interior and exterior portions of 14053. The textural heterogeneity of plagioclase crystals among thin sections revealed in this study suggests that an impact-ejecta blanket likely impinged on the western side of 14053. This thermal metamorphism coarsened the plagioclase grains within that portion of 14053 so intensely that components diffused to form subtle layering and moderate textural heterogeneity that was quantifiable. These results also support previous conclusions that suggest the differences in reduction textures within this sample are due to the limited penetration depth of solar-wind implanted hydrogen prior to reheating. Thermal metamorphism can produce textural changes in lunar samples even if below the solidus temperature, such that the plagioclase texture of an endogenous basalt is sufficiently altered to that resembling an impact melt. These results highlight the significance of quantitative petrographic observations of lunar samples to reveal important petrogenetic information that has to be placed in proper spatial context to be understood.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 6","pages":"1411-1420"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14362","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14362","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-Al Apollo 14 basalt 14053 has been identified as an endogenous partial melt product from the lunar interior based on geochemical analyses, specifically low abundances of highly siderophile elements, but exhibits textural characteristics similar to those of impact melts. Prior studies of this sample have described mineralogical differences between “interior” and “exterior” portions, which have been attributed to exposure at the lunar surface and subsequent metamorphism through subsolidus reheating within or in proximity to an impact-ejecta blanket. It has been demonstrated that quantitative textural analysis is a useful tool for distinguishing between lunar rocks altered by impact processes and those produced by endogenic magmatic processes. Such an approach is used in this study to analyze multiple thin sections cut from interior and exterior portions of 14053. The textural heterogeneity of plagioclase crystals among thin sections revealed in this study suggests that an impact-ejecta blanket likely impinged on the western side of 14053. This thermal metamorphism coarsened the plagioclase grains within that portion of 14053 so intensely that components diffused to form subtle layering and moderate textural heterogeneity that was quantifiable. These results also support previous conclusions that suggest the differences in reduction textures within this sample are due to the limited penetration depth of solar-wind implanted hydrogen prior to reheating. Thermal metamorphism can produce textural changes in lunar samples even if below the solidus temperature, such that the plagioclase texture of an endogenous basalt is sufficiently altered to that resembling an impact melt. These results highlight the significance of quantitative petrographic observations of lunar samples to reveal important petrogenetic information that has to be placed in proper spatial context to be understood.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.