Abhimanyu Gaur, Prasanna Kumar G. V., Deepak Kumar
{"title":"Food Oxalates: Occurrence in the Food System and Advances in Technologies for Reduction, Detection, and Quantification","authors":"Abhimanyu Gaur, Prasanna Kumar G. V., Deepak Kumar","doi":"10.1111/1541-4337.70212","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oxalic acid (OxA) is widely recognized as an antagonist to mineral absorption, leading to chronic renal complications such as nephropathy, hyperoxaluria, and induced inflammation. The interaction of OxA with metal ions results in a divalent/monovalent anion known as oxalate. In light of the growing interest in plant-based foods, this article provides a comprehensive and unbiased overview of oxalate in foods. It discusses the changes in oxalate content caused by various thermal, non-thermal, and combined food processing methods, as well as recent advances in oxalate extraction and quantification techniques, including food oxalate sensors. The challenges and interferences encountered during oxalate extraction and measurement with different quantification techniques are highlighted to aid scientists in their future efforts related to oxalate measurement in food systems. Selecting appropriate oxalate reduction techniques and their optimal applications is expected to make low-oxalate food products more accessible, thereby enhancing mineral bioavailability by promoting increased absorption in the intestinal epithelium. Although several methods have been developed for quantifying urinary oxalates, finding a quick and highly precise technique for measuring oxalate content in plant-based foods remains challenging. Interferences from metal ions, acids, and pigments during the quantification process make accurate and reliable measurement difficult. Future efforts should focus on developing low-oxalate foods by the food processing industries that are ready-to-eat or serve or cook, minimizing concerns about their oxalate content.</p>\n </div>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 4","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70212","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxalic acid (OxA) is widely recognized as an antagonist to mineral absorption, leading to chronic renal complications such as nephropathy, hyperoxaluria, and induced inflammation. The interaction of OxA with metal ions results in a divalent/monovalent anion known as oxalate. In light of the growing interest in plant-based foods, this article provides a comprehensive and unbiased overview of oxalate in foods. It discusses the changes in oxalate content caused by various thermal, non-thermal, and combined food processing methods, as well as recent advances in oxalate extraction and quantification techniques, including food oxalate sensors. The challenges and interferences encountered during oxalate extraction and measurement with different quantification techniques are highlighted to aid scientists in their future efforts related to oxalate measurement in food systems. Selecting appropriate oxalate reduction techniques and their optimal applications is expected to make low-oxalate food products more accessible, thereby enhancing mineral bioavailability by promoting increased absorption in the intestinal epithelium. Although several methods have been developed for quantifying urinary oxalates, finding a quick and highly precise technique for measuring oxalate content in plant-based foods remains challenging. Interferences from metal ions, acids, and pigments during the quantification process make accurate and reliable measurement difficult. Future efforts should focus on developing low-oxalate foods by the food processing industries that are ready-to-eat or serve or cook, minimizing concerns about their oxalate content.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.