{"title":"A Time-Adaptive Multirate Quasi-Newton Waveform Iteration for Coupled Problems","authors":"Niklas Kotarsky, Philipp Birken","doi":"10.1002/nme.70063","DOIUrl":null,"url":null,"abstract":"<p>We consider waveform iterations for dynamical coupled problems, or more specifically, PDEs that interact through a lower-dimensional interface. We want to allow for the reuse of existing codes for the subproblems, called a partitioned approach. To improve computational efficiency, different and adaptive time steps in the subsolvers are advisable. Using so-called waveform iterations in combination with relaxation, this has been achieved for heat transfer problems earlier. Alternatively, one can use a black box method like Quasi-Newton to improve the convergence behavior. These methods have recently been combined with waveform iterations for fixed time steps. Here, we suggest an extension of the Quasi-Newton method to the time-adaptive setting and analyze its properties. We compare the proposed Quasi-Newton method with state-of-the-art solvers on a heat transfer test case and a complex mechanical Fluid-Structure interaction case, demonstrating the method's efficiency.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70063","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider waveform iterations for dynamical coupled problems, or more specifically, PDEs that interact through a lower-dimensional interface. We want to allow for the reuse of existing codes for the subproblems, called a partitioned approach. To improve computational efficiency, different and adaptive time steps in the subsolvers are advisable. Using so-called waveform iterations in combination with relaxation, this has been achieved for heat transfer problems earlier. Alternatively, one can use a black box method like Quasi-Newton to improve the convergence behavior. These methods have recently been combined with waveform iterations for fixed time steps. Here, we suggest an extension of the Quasi-Newton method to the time-adaptive setting and analyze its properties. We compare the proposed Quasi-Newton method with state-of-the-art solvers on a heat transfer test case and a complex mechanical Fluid-Structure interaction case, demonstrating the method's efficiency.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.