Elana G. Alevy, Tasha L. Dunn, Alexander N. Krot, Paul Cardon-Pilotaz, Juliane Gross
{"title":"Multiple CV chondrite lithologies in Camel Donga 003 (CK3): Implications for the CV and CK parent bodies","authors":"Elana G. Alevy, Tasha L. Dunn, Alexander N. Krot, Paul Cardon-Pilotaz, Juliane Gross","doi":"10.1111/maps.14358","DOIUrl":null,"url":null,"abstract":"<p>Camel Donga 003 (CD 003) was originally classified as a CK3 chondrite based on its coarse-grained matrix, Ni-rich sulfides, Cr-rich magnetite, and CK-like silicate mineralogy. However, after preliminary backscattered electron imaging and elemental mapping of a 400 mm<sup>2</sup> thin section of CD 003, subsequent mineral chemistry analysis confirmed that the sample is a fragmental breccia consisting of three oxidized CV lithologies. In the two largest lithologies, both mineralogically pristine and metasomatically altered refractory inclusions are commonly found in close proximity to one another. This suggests that brecciation and mixing of different lithologies in CD 003 occurred on a submillimeter scale. The least abundant lithology—an 8 × 3 mm clast—is distinguished from the other lithologies by its recrystallized matrix, poorly defined chondrules, and equilibrated olivine (Fa<sub>42</sub>). The homogeneity of matrix and chondrule olivine indicates that this lithology has been metamorphosed to at least petrologic subtype 3.8 conditions. We can trace the provenance of our sample to the main mass of CD 003, which must contain the CK material described in its original classification. Therefore, the presence of the three oxidized CV lithologies suggests that CD 003 is the first CV/CK3 chondrite breccia.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 6","pages":"1336-1364"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14358","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Camel Donga 003 (CD 003) was originally classified as a CK3 chondrite based on its coarse-grained matrix, Ni-rich sulfides, Cr-rich magnetite, and CK-like silicate mineralogy. However, after preliminary backscattered electron imaging and elemental mapping of a 400 mm2 thin section of CD 003, subsequent mineral chemistry analysis confirmed that the sample is a fragmental breccia consisting of three oxidized CV lithologies. In the two largest lithologies, both mineralogically pristine and metasomatically altered refractory inclusions are commonly found in close proximity to one another. This suggests that brecciation and mixing of different lithologies in CD 003 occurred on a submillimeter scale. The least abundant lithology—an 8 × 3 mm clast—is distinguished from the other lithologies by its recrystallized matrix, poorly defined chondrules, and equilibrated olivine (Fa42). The homogeneity of matrix and chondrule olivine indicates that this lithology has been metamorphosed to at least petrologic subtype 3.8 conditions. We can trace the provenance of our sample to the main mass of CD 003, which must contain the CK material described in its original classification. Therefore, the presence of the three oxidized CV lithologies suggests that CD 003 is the first CV/CK3 chondrite breccia.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.