{"title":"Cross-Border Cooperation to Mitigate Wake Losses in Offshore Wind Energy: A 2050 Case Study for the North Sea","authors":"Felix Jakob Fliegner, Axel Kleidon, Thure Traber","doi":"10.1155/er/2518424","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Offshore wind energy is integral to Europe’s climate and energy goals, with plans to install 500 GW of capacity by 2050. However, wake effects, which involve reductions in wind speed and energy yield caused by upstream turbines, pose a significant efficiency challenge, particularly in dense wind farm clusters in the North Sea. This study examines the implications of large-scale wakes, focusing on cross-border effects and mitigation strategies. Through an assessment of the kinetic energy budget of the atmosphere (KEBA), it identifies wake-induced yield reductions of 30% for the German Bight in the North Sea, with half of these being attributed to the cross-border accumulation of wakes. The findings demonstrate that redistributing wind farm capacities across borders could reduce wake losses to 18%, thereby enhancing energy yield. This could prevent the equivalent of about 8 GW offshore wind generation capacity being lost due to wakes and reduce the levelised cost of electricity. This study highlights the importance of cross-border collaboration and sea basin wide planning to optimise wind farm placement, enhance production efficiency, and ensure the economic viability of offshore wind energy.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/2518424","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/2518424","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Offshore wind energy is integral to Europe’s climate and energy goals, with plans to install 500 GW of capacity by 2050. However, wake effects, which involve reductions in wind speed and energy yield caused by upstream turbines, pose a significant efficiency challenge, particularly in dense wind farm clusters in the North Sea. This study examines the implications of large-scale wakes, focusing on cross-border effects and mitigation strategies. Through an assessment of the kinetic energy budget of the atmosphere (KEBA), it identifies wake-induced yield reductions of 30% for the German Bight in the North Sea, with half of these being attributed to the cross-border accumulation of wakes. The findings demonstrate that redistributing wind farm capacities across borders could reduce wake losses to 18%, thereby enhancing energy yield. This could prevent the equivalent of about 8 GW offshore wind generation capacity being lost due to wakes and reduce the levelised cost of electricity. This study highlights the importance of cross-border collaboration and sea basin wide planning to optimise wind farm placement, enhance production efficiency, and ensure the economic viability of offshore wind energy.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system