Faleh Abushahba, Adrian Stiller, Sherif A. Mohamad, Nagat Areid, Leena Hupa, Terhi J. Heino, Pekka K. Vallittu, Timo O. Närhi
{"title":"Exploring the Reactions Induced by Bioactive Glass Air Abrasion of Titanium and Their Effects on Osteoblast Cellular Responses","authors":"Faleh Abushahba, Adrian Stiller, Sherif A. Mohamad, Nagat Areid, Leena Hupa, Terhi J. Heino, Pekka K. Vallittu, Timo O. Närhi","doi":"10.1002/jbm.a.37949","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the chemical events that occur when titanium (Ti) surfaces are treated with air particle abrasion (APA) using zinc-containing bioactive glass (ZnBG), followed by immersion in simulated body fluid (SBF) for up to 96 h. The impact of these changes on osteoblast cell viability, adhesion, and differentiation was evaluated. Sandblasted and acid-etched (SA) Ti disks were subjected to APA with ZnBG particles and then immersed in SBF from 8 to 96 h. Ion dissolution and characterization of ZnBG powder and Ti disks were conducted. Analyses of osteoblast viability, adhesion, and alkaline phosphatase (ALP) activity were performed on MC3T3-E1 cells cultured on control disks (SA-Ti), as well as on ZnBG abraded disks (APA-Ti) and disks immersed for 96 h in SBF (CaP-Ti). After SBF immersion, the ZnBG particle surfaces showed a rise in Si atomic (at.)% within the first 8 h, while Ca remained stable, and the P doubled over 96 h. The ZnBG covering the disks dissolved during the first 8 h, and then the Ca, P, and Si at.% increased as the immersion time extended. The glass particles exhibited amorphous calcium–phosphate (Ca–P) layer formation after 96 h. A significantly (<i>p</i> = 0.004) higher cell viability level was observed on day 7 on APA-Ti compared to SA-Ti disks, while no differences in osteoblast differentiation were observed across the different surfaces. Fluorescence images demonstrated that on day 3, cells adhered to valleys and peaks of CaP-Ti threads but only to valleys on SA-Ti and APA-Ti disks. By day 7, cells were also observed on APA-Ti peaks but not on SA-Ti. In summary, APA enhanced osteoblast proliferation, and a biocompatible Ca–P layer, which formed upon mineralization, supported osteoblast viability, adhesion, and spreading.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37949","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37949","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the chemical events that occur when titanium (Ti) surfaces are treated with air particle abrasion (APA) using zinc-containing bioactive glass (ZnBG), followed by immersion in simulated body fluid (SBF) for up to 96 h. The impact of these changes on osteoblast cell viability, adhesion, and differentiation was evaluated. Sandblasted and acid-etched (SA) Ti disks were subjected to APA with ZnBG particles and then immersed in SBF from 8 to 96 h. Ion dissolution and characterization of ZnBG powder and Ti disks were conducted. Analyses of osteoblast viability, adhesion, and alkaline phosphatase (ALP) activity were performed on MC3T3-E1 cells cultured on control disks (SA-Ti), as well as on ZnBG abraded disks (APA-Ti) and disks immersed for 96 h in SBF (CaP-Ti). After SBF immersion, the ZnBG particle surfaces showed a rise in Si atomic (at.)% within the first 8 h, while Ca remained stable, and the P doubled over 96 h. The ZnBG covering the disks dissolved during the first 8 h, and then the Ca, P, and Si at.% increased as the immersion time extended. The glass particles exhibited amorphous calcium–phosphate (Ca–P) layer formation after 96 h. A significantly (p = 0.004) higher cell viability level was observed on day 7 on APA-Ti compared to SA-Ti disks, while no differences in osteoblast differentiation were observed across the different surfaces. Fluorescence images demonstrated that on day 3, cells adhered to valleys and peaks of CaP-Ti threads but only to valleys on SA-Ti and APA-Ti disks. By day 7, cells were also observed on APA-Ti peaks but not on SA-Ti. In summary, APA enhanced osteoblast proliferation, and a biocompatible Ca–P layer, which formed upon mineralization, supported osteoblast viability, adhesion, and spreading.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.