{"title":"Capturing thin-film microstructure contributions during ultrafast laser-metal interactions using atomistic simulations","authors":"Hariprasath Ganesan , Stefan Sandfeld","doi":"10.1016/j.matdes.2025.114224","DOIUrl":null,"url":null,"abstract":"<div><div>Progress in the emerging fields of atomic and close-to-atomic scale manufacturing is underpinned by enhanced precision and optimization of laser-controlled nanostructuring. Understanding thin films' crystallographic orientations and microstructure effects becomes crucial for optimizing the laser-metallic thin film interactions; however, these effects remain largely unexplored at the atomic scale. Using a hybrid two-temperature model and molecular dynamics, we simulated ultrafast laser-metal interactions for gold thin films with varying crystallographic orientations and microstructure configurations. Microstructure features, namely grain size, grain topology, and local crystallographic orientation, controlled the rate and extent of lattice disorder evolution and phase transformation, particularly at lower applied fluences. Our simulations provided comprehensive insights encompassing both the nanomechanical and thermodynamic aspects of ultrafast laser-metal interactions at atomic resolution. Microstructure-aware/informed thin film fabrication and targeted defect engineering could improve the precision of nanoscale laser processing and potentially emerge as an energy-efficient optimization strategy.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"256 ","pages":"Article 114224"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525006446","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Progress in the emerging fields of atomic and close-to-atomic scale manufacturing is underpinned by enhanced precision and optimization of laser-controlled nanostructuring. Understanding thin films' crystallographic orientations and microstructure effects becomes crucial for optimizing the laser-metallic thin film interactions; however, these effects remain largely unexplored at the atomic scale. Using a hybrid two-temperature model and molecular dynamics, we simulated ultrafast laser-metal interactions for gold thin films with varying crystallographic orientations and microstructure configurations. Microstructure features, namely grain size, grain topology, and local crystallographic orientation, controlled the rate and extent of lattice disorder evolution and phase transformation, particularly at lower applied fluences. Our simulations provided comprehensive insights encompassing both the nanomechanical and thermodynamic aspects of ultrafast laser-metal interactions at atomic resolution. Microstructure-aware/informed thin film fabrication and targeted defect engineering could improve the precision of nanoscale laser processing and potentially emerge as an energy-efficient optimization strategy.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.