Immunometabolic Pathways: Investigating Mediators of Major Depressive Disorder and Atherosclerotic Cardiovascular Disease Comorbidity

IF 4 Q2 NEUROSCIENCES
Angela Koloi , Nabila P.R. Siregar , Rick Quax , Antonis I. Sakellarios , Femke Lamers , Arja Rydin , Kevin Dobretz , Costas Papaloukas , Dimitrios I. Fotiadis , Jos A. Bosch
{"title":"Immunometabolic Pathways: Investigating Mediators of Major Depressive Disorder and Atherosclerotic Cardiovascular Disease Comorbidity","authors":"Angela Koloi ,&nbsp;Nabila P.R. Siregar ,&nbsp;Rick Quax ,&nbsp;Antonis I. Sakellarios ,&nbsp;Femke Lamers ,&nbsp;Arja Rydin ,&nbsp;Kevin Dobretz ,&nbsp;Costas Papaloukas ,&nbsp;Dimitrios I. Fotiadis ,&nbsp;Jos A. Bosch","doi":"10.1016/j.bpsgos.2025.100528","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Major depressive disorder (MDD) and cardiovascular diseases (CVDs) often co-occur whereby comorbidity results in poorer clinical outcomes, presumably due to shared immunometabolic pathways. Identifying shared biomarkers for MDD-CVD comorbidity may provide targets for prevention or treatment.</div></div><div><h3>Methods</h3><div>Using data from the NESDA (Netherlands Study of Depression and Anxiety) (<em>n</em> = 2256, 66.3% female, mean age 41.86 ± 13.08 years at baseline), validated with the UK Biobank (UKB) data (<em>n</em> = 35,668, 56.14% female, mean age 63.95 ± 7.74 years), this study aimed to identify 1) biomarkers, closely associated with current MDD, and 2) longitudinal pathways linking MDD and atherosclerotic CVD. Plasma metabolites (nuclear magnetic resonance) and inflammatory markers were used as exposures within a machine learning framework. Influential biomarkers were integrated into a temporal network analysis linking MDD to subsequent CVDs, exploring longitudinal pathways through causal discovery, validated by sensitivity analysis and centrality assessment. External validation included mediation and regression analysis adjusting for covariates.</div></div><div><h3>Results</h3><div>Network analysis identified stable direct paths from MDD to CVDs via tumor necrosis factor α (TNF-α), tyrosine, and fatty acids and indirect paths via acetate, high-density lipoprotein (HDL) diameter, interleukin 6, AGP, high-sensitivity C-reactive protein, and low-density lipoprotein triglycerides. Among these, acetate, tyrosine, AGP (α<sub>1</sub>-acid glycoprotein), and HDL diameter potentially mediated the MDD-CVD connection, given that these were identified as key nodes within the network. UKB validation confirmed HDL diameter (β = 0.004) and AGP (β = 0.003) as significant depression-CVD mediators (both <em>p</em> &lt; .001), after adjusting for age, sex, deprivation index, alcohol consumption, smoking status, physical activity, and body mass index.</div></div><div><h3>Conclusions</h3><div>These analyses identified biomarkers shared in MDD and CVDs and may drive comorbid pathology risk.</div></div>","PeriodicalId":72373,"journal":{"name":"Biological psychiatry global open science","volume":"5 5","pages":"Article 100528"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry global open science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667174325000825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Major depressive disorder (MDD) and cardiovascular diseases (CVDs) often co-occur whereby comorbidity results in poorer clinical outcomes, presumably due to shared immunometabolic pathways. Identifying shared biomarkers for MDD-CVD comorbidity may provide targets for prevention or treatment.

Methods

Using data from the NESDA (Netherlands Study of Depression and Anxiety) (n = 2256, 66.3% female, mean age 41.86 ± 13.08 years at baseline), validated with the UK Biobank (UKB) data (n = 35,668, 56.14% female, mean age 63.95 ± 7.74 years), this study aimed to identify 1) biomarkers, closely associated with current MDD, and 2) longitudinal pathways linking MDD and atherosclerotic CVD. Plasma metabolites (nuclear magnetic resonance) and inflammatory markers were used as exposures within a machine learning framework. Influential biomarkers were integrated into a temporal network analysis linking MDD to subsequent CVDs, exploring longitudinal pathways through causal discovery, validated by sensitivity analysis and centrality assessment. External validation included mediation and regression analysis adjusting for covariates.

Results

Network analysis identified stable direct paths from MDD to CVDs via tumor necrosis factor α (TNF-α), tyrosine, and fatty acids and indirect paths via acetate, high-density lipoprotein (HDL) diameter, interleukin 6, AGP, high-sensitivity C-reactive protein, and low-density lipoprotein triglycerides. Among these, acetate, tyrosine, AGP (α1-acid glycoprotein), and HDL diameter potentially mediated the MDD-CVD connection, given that these were identified as key nodes within the network. UKB validation confirmed HDL diameter (β = 0.004) and AGP (β = 0.003) as significant depression-CVD mediators (both p < .001), after adjusting for age, sex, deprivation index, alcohol consumption, smoking status, physical activity, and body mass index.

Conclusions

These analyses identified biomarkers shared in MDD and CVDs and may drive comorbid pathology risk.
免疫代谢途径:研究重度抑郁症和动脉粥样硬化性心血管疾病合并症的介质
背景:重度抑郁症(MDD)和心血管疾病(cvd)经常同时发生,其中共病导致较差的临床结果,可能是由于共享的免疫代谢途径。确定MDD-CVD共病的共同生物标志物可能为预防或治疗提供靶点。方法使用NESDA(荷兰抑郁和焦虑研究)的数据(n = 2256, 66.3%女性,基线时平均年龄41.86±13.08岁),并通过英国生物银行(UKB)数据(n = 35668, 56.14%女性,平均年龄63.95±7.74岁)验证,本研究旨在确定1)与当前MDD密切相关的生物标志物,以及2)MDD与动脉粥样硬化性CVD之间的纵向通路。血浆代谢物(核磁共振)和炎症标志物被用作机器学习框架内的暴露。有影响力的生物标志物被整合到将MDD与随后的cvd联系起来的时间网络分析中,通过因果发现探索纵向途径,并通过敏感性分析和中心性评估进行验证。外部验证包括调节协变量的中介和回归分析。结果网络分析发现,MDD通过肿瘤坏死因子α (TNF-α)、酪氨酸和脂肪酸等直接途径转化为cvd,通过醋酸酯、高密度脂蛋白(HDL)直径、白细胞介素6、AGP、高敏c反应蛋白和低密度脂蛋白甘油三酯等间接途径转化为cvd。其中,醋酸、酪氨酸、AGP (α1-酸性糖蛋白)和HDL直径可能介导MDD-CVD连接,因为这些被确定为网络中的关键节点。UKB验证证实HDL直径(β = 0.004)和AGP (β = 0.003)是显著的抑郁- cvd介质(p <;.001),在调整了年龄、性别、剥夺指数、饮酒、吸烟状况、身体活动和体重指数之后。这些分析确定了MDD和cvd共有的生物标志物,并可能驱动共病的病理风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological psychiatry global open science
Biological psychiatry global open science Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信