Depth Estimation in Urban Flooding Using Surveillance Cameras and High-Resolution LiDAR Data

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mahta Zamanizadeh , Mecit Cetin , Ali Shahabi , Navid Tahvildari
{"title":"Depth Estimation in Urban Flooding Using Surveillance Cameras and High-Resolution LiDAR Data","authors":"Mahta Zamanizadeh ,&nbsp;Mecit Cetin ,&nbsp;Ali Shahabi ,&nbsp;Navid Tahvildari","doi":"10.1016/j.envsoft.2025.106572","DOIUrl":null,"url":null,"abstract":"<div><div>Urban flooding disrupts transportation networks, making accurate real-time flood depth estimation on roads crucial. At regional scales, flood extents from satellite imagery are overlaid with Digital Elevation Models (DEMs) to estimate flood depths. However, at street scales, flood extent images are captured by surveillance cameras, which provide perspective rather than top-down views. In this paper, we present a reliable method for estimating flood depth at street scales by integrating high-resolution DEMs, obtained via LiDAR, surveillance camera imagery, and pinhole camera models to project the DEM onto the image. Our algorithm generates a series of “artificial floods” by truncating the projected DEM at different elevations. The flood depth is then determined by maximizing the alignment between the artificial and observed flood extents. Validation using ground-truth data shows that our approach achieves an average error of less than 1 cm for flood depths above 5 cm, although performance declines for shallower depths.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"192 ","pages":"Article 106572"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225002567","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Urban flooding disrupts transportation networks, making accurate real-time flood depth estimation on roads crucial. At regional scales, flood extents from satellite imagery are overlaid with Digital Elevation Models (DEMs) to estimate flood depths. However, at street scales, flood extent images are captured by surveillance cameras, which provide perspective rather than top-down views. In this paper, we present a reliable method for estimating flood depth at street scales by integrating high-resolution DEMs, obtained via LiDAR, surveillance camera imagery, and pinhole camera models to project the DEM onto the image. Our algorithm generates a series of “artificial floods” by truncating the projected DEM at different elevations. The flood depth is then determined by maximizing the alignment between the artificial and observed flood extents. Validation using ground-truth data shows that our approach achieves an average error of less than 1 cm for flood depths above 5 cm, although performance declines for shallower depths.
基于监控摄像机和高分辨率激光雷达数据的城市洪水深度估计
城市洪水破坏了交通网络,因此对道路进行准确的实时洪水深度估计至关重要。在区域尺度上,卫星图像的洪水范围与数字高程模型(dem)叠加以估计洪水深度。然而,在街道尺度上,洪水范围的图像是由监控摄像头捕获的,它提供的是视角,而不是自上而下的视图。在本文中,我们提出了一种在街道尺度上估计洪水深度的可靠方法,该方法通过整合通过激光雷达、监控摄像机图像和针孔摄像机模型获得的高分辨率DEM,将DEM投影到图像上。我们的算法通过截断不同高度的投影DEM来生成一系列“人工洪水”。然后通过最大化人工和观测洪水范围之间的对齐来确定洪水深度。使用地面真实数据验证表明,我们的方法在水深超过5厘米的情况下平均误差小于1厘米,尽管在较浅的深度下性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信