Jacob Wenner , Mark C. Messner , Michael J. Wagner
{"title":"Damage modeling of power tower receiver tubes using the SRLIFE tool","authors":"Jacob Wenner , Mark C. Messner , Michael J. Wagner","doi":"10.1016/j.solener.2025.113627","DOIUrl":null,"url":null,"abstract":"<div><div>Concentrating Solar Power (CSP) molten-salt central receivers are subject to high, transient incident flux during daily operation. The resulting creep-fatigue damage impacts the receiver’s reliability and restricts the permissible incident flux distribution for a given receiver. This paper aims to reduce CSP plants’ levelized cost of electricity by developing a methodology to predict lifetime and identifies the primary damage mechanism (creep vs fatigue) for any given fluid temperature and temperature gradient. Results are presented in the form of a damage map that serves as a valuable operation guide and design tool. Damage maps can be used to reduce maintenance costs by improving reliability and reduce receiver capital costs by better utilizing the receiver area. FEA simulation and damage modeling of tubes subject to asymmetrical flux conditions is performed in the open-source receiver design tool <span>srlife</span>. Parametric studies are performed over a range of inner tube temperatures and thermal gradients for A230, 316H, 740H, A282, A617, and 800H high temperature alloys. Damage maps are presented for each alloy. A parametric, FEA-based methodology is presented for comparison of fatigue-creep ratios and prediction of tube lifetime based on the critical thermal operating conditions. Fatigue is found to be negligible compared to creep for almost every case. This finding suggests that fatigue effects associated with cloud events are insignificant compared to creep at these high temperature operating conditions. Additionally, lifetime predictions identify thermal conditions where small changes in operating conditions can result in large changes in predicted lifetime.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113627"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25003901","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Concentrating Solar Power (CSP) molten-salt central receivers are subject to high, transient incident flux during daily operation. The resulting creep-fatigue damage impacts the receiver’s reliability and restricts the permissible incident flux distribution for a given receiver. This paper aims to reduce CSP plants’ levelized cost of electricity by developing a methodology to predict lifetime and identifies the primary damage mechanism (creep vs fatigue) for any given fluid temperature and temperature gradient. Results are presented in the form of a damage map that serves as a valuable operation guide and design tool. Damage maps can be used to reduce maintenance costs by improving reliability and reduce receiver capital costs by better utilizing the receiver area. FEA simulation and damage modeling of tubes subject to asymmetrical flux conditions is performed in the open-source receiver design tool srlife. Parametric studies are performed over a range of inner tube temperatures and thermal gradients for A230, 316H, 740H, A282, A617, and 800H high temperature alloys. Damage maps are presented for each alloy. A parametric, FEA-based methodology is presented for comparison of fatigue-creep ratios and prediction of tube lifetime based on the critical thermal operating conditions. Fatigue is found to be negligible compared to creep for almost every case. This finding suggests that fatigue effects associated with cloud events are insignificant compared to creep at these high temperature operating conditions. Additionally, lifetime predictions identify thermal conditions where small changes in operating conditions can result in large changes in predicted lifetime.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass