{"title":"Transition from a crack-type to a supershear-type to a spall-type mode of separation for tensile loading of an elastic solid with a weak interface","authors":"M. Wang , J. Fineberg , A. Needleman","doi":"10.1016/j.jmps.2025.106213","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic mode I crack growth in a sheet with an edge pre-crack subject to remote impact tensile loading is investigated experimentally and computationally. Separation is constrained to occur along a weak interface directly ahead of the pre-crack tip. The experiments are carried out on a PDMS sheet composed of two sheets glued together to make the weak surface in front of the pre-crack. The thickness and composition of the glue are varied to provide different cohesive properties. In the calculations, the sheet material is represented by an isotropic hyperelastic constitutive relation and the weak interface is represented by a zero thickness cohesive surface with the cohesive traction related to the displacement jump across the interface. The calculations are in qualitative agreement with the experiments for the propagation speed, the shape of the opening along the interface and general features of the deformation distribution in the material. Both the experiments and the calculations indicate that a characteristic length scale, associated with the cohesive response of the interface plays a key role in affecting the propagation speed and the mode of separation. When the cohesive length scale is sufficiently small, propagation is crack-like and the propagation speed does not exceed the Rayleigh wave speed. An increased value of the cohesive length scale leads to a propagation speed that exceeds the shear wave speed. Transition to a spall-like separation mode occurs when the opening traction on the remaining ligament reaches the cohesive strength of the interface. A cohesive interface with a larger value of the work of separation can have a faster separation speed than one having the same cohesive strength but a smaller value of the work of separation. For calculations with loading imposed on the faces of the pre-crack, so that propagation occurs into unstressed material, the propagation speed does not exceed the Rayleigh wave speed even for a very weak interface.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"203 ","pages":"Article 106213"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001899","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic mode I crack growth in a sheet with an edge pre-crack subject to remote impact tensile loading is investigated experimentally and computationally. Separation is constrained to occur along a weak interface directly ahead of the pre-crack tip. The experiments are carried out on a PDMS sheet composed of two sheets glued together to make the weak surface in front of the pre-crack. The thickness and composition of the glue are varied to provide different cohesive properties. In the calculations, the sheet material is represented by an isotropic hyperelastic constitutive relation and the weak interface is represented by a zero thickness cohesive surface with the cohesive traction related to the displacement jump across the interface. The calculations are in qualitative agreement with the experiments for the propagation speed, the shape of the opening along the interface and general features of the deformation distribution in the material. Both the experiments and the calculations indicate that a characteristic length scale, associated with the cohesive response of the interface plays a key role in affecting the propagation speed and the mode of separation. When the cohesive length scale is sufficiently small, propagation is crack-like and the propagation speed does not exceed the Rayleigh wave speed. An increased value of the cohesive length scale leads to a propagation speed that exceeds the shear wave speed. Transition to a spall-like separation mode occurs when the opening traction on the remaining ligament reaches the cohesive strength of the interface. A cohesive interface with a larger value of the work of separation can have a faster separation speed than one having the same cohesive strength but a smaller value of the work of separation. For calculations with loading imposed on the faces of the pre-crack, so that propagation occurs into unstressed material, the propagation speed does not exceed the Rayleigh wave speed even for a very weak interface.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.