Transition from a crack-type to a supershear-type to a spall-type mode of separation for tensile loading of an elastic solid with a weak interface

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Wang , J. Fineberg , A. Needleman
{"title":"Transition from a crack-type to a supershear-type to a spall-type mode of separation for tensile loading of an elastic solid with a weak interface","authors":"M. Wang ,&nbsp;J. Fineberg ,&nbsp;A. Needleman","doi":"10.1016/j.jmps.2025.106213","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic mode I crack growth in a sheet with an edge pre-crack subject to remote impact tensile loading is investigated experimentally and computationally. Separation is constrained to occur along a weak interface directly ahead of the pre-crack tip. The experiments are carried out on a PDMS sheet composed of two sheets glued together to make the weak surface in front of the pre-crack. The thickness and composition of the glue are varied to provide different cohesive properties. In the calculations, the sheet material is represented by an isotropic hyperelastic constitutive relation and the weak interface is represented by a zero thickness cohesive surface with the cohesive traction related to the displacement jump across the interface. The calculations are in qualitative agreement with the experiments for the propagation speed, the shape of the opening along the interface and general features of the deformation distribution in the material. Both the experiments and the calculations indicate that a characteristic length scale, associated with the cohesive response of the interface plays a key role in affecting the propagation speed and the mode of separation. When the cohesive length scale is sufficiently small, propagation is crack-like and the propagation speed does not exceed the Rayleigh wave speed. An increased value of the cohesive length scale leads to a propagation speed that exceeds the shear wave speed. Transition to a spall-like separation mode occurs when the opening traction on the remaining ligament reaches the cohesive strength of the interface. A cohesive interface with a larger value of the work of separation can have a faster separation speed than one having the same cohesive strength but a smaller value of the work of separation. For calculations with loading imposed on the faces of the pre-crack, so that propagation occurs into unstressed material, the propagation speed does not exceed the Rayleigh wave speed even for a very weak interface.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"203 ","pages":"Article 106213"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001899","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic mode I crack growth in a sheet with an edge pre-crack subject to remote impact tensile loading is investigated experimentally and computationally. Separation is constrained to occur along a weak interface directly ahead of the pre-crack tip. The experiments are carried out on a PDMS sheet composed of two sheets glued together to make the weak surface in front of the pre-crack. The thickness and composition of the glue are varied to provide different cohesive properties. In the calculations, the sheet material is represented by an isotropic hyperelastic constitutive relation and the weak interface is represented by a zero thickness cohesive surface with the cohesive traction related to the displacement jump across the interface. The calculations are in qualitative agreement with the experiments for the propagation speed, the shape of the opening along the interface and general features of the deformation distribution in the material. Both the experiments and the calculations indicate that a characteristic length scale, associated with the cohesive response of the interface plays a key role in affecting the propagation speed and the mode of separation. When the cohesive length scale is sufficiently small, propagation is crack-like and the propagation speed does not exceed the Rayleigh wave speed. An increased value of the cohesive length scale leads to a propagation speed that exceeds the shear wave speed. Transition to a spall-like separation mode occurs when the opening traction on the remaining ligament reaches the cohesive strength of the interface. A cohesive interface with a larger value of the work of separation can have a faster separation speed than one having the same cohesive strength but a smaller value of the work of separation. For calculations with loading imposed on the faces of the pre-crack, so that propagation occurs into unstressed material, the propagation speed does not exceed the Rayleigh wave speed even for a very weak interface.
弱界面弹性固体拉伸加载从裂纹型到超剪切型再到剥落型分离模式的转变
对带边缘预裂纹的薄板在远程冲击拉伸载荷作用下的动态I型裂纹扩展进行了实验和计算研究。分离仅限于沿预裂尖端前方的弱界面发生。实验是在预裂缝前由两层胶合在一起形成弱表面的PDMS板上进行的。胶水的厚度和成分是不同的,以提供不同的粘合性能。在计算中,薄片材料用各向同性超弹性本构关系表示,弱界面用零厚度黏结面表示,黏结牵引力与跨越界面的位移跳变有关。计算结果与实验结果在传播速度、沿界面开孔形状和材料内部变形分布的一般特征上基本一致。实验和计算均表明,与界面内聚响应有关的特征长度尺度对传播速度和分离方式起着关键作用。当内聚长度尺度足够小时,传播呈裂纹状,传播速度不超过瑞利波速。黏结长度尺度的增大导致传播速度超过横波速度。当剩余韧带的开口牵引力达到界面的内聚强度时,会发生向片状分离模式的过渡。具有较大分离功值的内聚界面比具有相同内聚强度但分离功值较小的界面具有更快的分离速度。对于在预裂纹面上施加载荷使其向无应力材料中传播的计算,即使在非常弱的界面上,传播速度也不超过瑞利波速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信