Shuai Liu , Jiyou Chen , Xiangling Ding , Gaobo Yang
{"title":"Progressive Reverse Attention Network for image inpainting detection and localization","authors":"Shuai Liu , Jiyou Chen , Xiangling Ding , Gaobo Yang","doi":"10.1016/j.cviu.2025.104407","DOIUrl":null,"url":null,"abstract":"<div><div>Image inpainting is originally presented to restore damaged image areas, but it might be maliciously used for object removal that change image semantic content. This easily leads to serious public confidence crises. Up to present, image inpainting forensics works have achieved remarkable results, but they usually ignore or fail to capture subtle artifacts near object boundary, resulting in inaccurate object mask localization. To address this issue, we propose a Progressive Reverse Attention Network (PRA-Net) for image inpainting detection and localization. Different from the traditional convolutional neural networks (CNN) structure, PRA-Net follows an encoder and decoder architecture. The encoder leverages features at different scales with dense cross-connections to locate inpainted regions and generates global map with our designed multi-scale extraction module. A reverse attention module is used as the backbone of the decoder to progressively refine the details of predictions. Experimental results show that PRA-Net achieves accurate image inpainting localization and desirable robustness.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"259 ","pages":"Article 104407"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225001304","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Image inpainting is originally presented to restore damaged image areas, but it might be maliciously used for object removal that change image semantic content. This easily leads to serious public confidence crises. Up to present, image inpainting forensics works have achieved remarkable results, but they usually ignore or fail to capture subtle artifacts near object boundary, resulting in inaccurate object mask localization. To address this issue, we propose a Progressive Reverse Attention Network (PRA-Net) for image inpainting detection and localization. Different from the traditional convolutional neural networks (CNN) structure, PRA-Net follows an encoder and decoder architecture. The encoder leverages features at different scales with dense cross-connections to locate inpainted regions and generates global map with our designed multi-scale extraction module. A reverse attention module is used as the backbone of the decoder to progressively refine the details of predictions. Experimental results show that PRA-Net achieves accurate image inpainting localization and desirable robustness.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems