Large-time asymptotics for hyperbolic systems with non-symmetric relaxation: An algorithmic approach

IF 2.1 1区 数学 Q1 MATHEMATICS
Timothée Crin-Barat , Lorenzo Liverani , Ling-Yun Shou , Enrique Zuazua
{"title":"Large-time asymptotics for hyperbolic systems with non-symmetric relaxation: An algorithmic approach","authors":"Timothée Crin-Barat ,&nbsp;Lorenzo Liverani ,&nbsp;Ling-Yun Shou ,&nbsp;Enrique Zuazua","doi":"10.1016/j.matpur.2025.103757","DOIUrl":null,"url":null,"abstract":"<div><div>We study the stability of one-dimensional linear hyperbolic systems with non-symmetric relaxation. Introducing a new frequency-dependent Kalman stability condition, we prove an abstract decay result underpinning a form of <em>inhomogeneous hypocoercivity</em>. In contrast with the homogeneous setting, the decay rates depend on how the Kalman condition is fulfilled and, in most cases, a loss of derivative occurs: one must require an additional regularity assumption on the initial data to ensure the decay.</div><div>Under structural assumptions, we refine our abstract result by providing an algorithm, of wide applicability, for the construction of Lyapunov functionals. This allows us to systematically establish decay estimates for a given system and uncover algebraic cancellations (beyond the reach of the Kalman-based approach) reducing the loss of derivatives in high frequencies. To demonstrate the applicability of our method, we derive new stability results for the Sugimoto model, which describes the propagation of nonlinear acoustic waves, and for a beam model of Timoshenko type with memory.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"202 ","pages":"Article 103757"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the stability of one-dimensional linear hyperbolic systems with non-symmetric relaxation. Introducing a new frequency-dependent Kalman stability condition, we prove an abstract decay result underpinning a form of inhomogeneous hypocoercivity. In contrast with the homogeneous setting, the decay rates depend on how the Kalman condition is fulfilled and, in most cases, a loss of derivative occurs: one must require an additional regularity assumption on the initial data to ensure the decay.
Under structural assumptions, we refine our abstract result by providing an algorithm, of wide applicability, for the construction of Lyapunov functionals. This allows us to systematically establish decay estimates for a given system and uncover algebraic cancellations (beyond the reach of the Kalman-based approach) reducing the loss of derivatives in high frequencies. To demonstrate the applicability of our method, we derive new stability results for the Sugimoto model, which describes the propagation of nonlinear acoustic waves, and for a beam model of Timoshenko type with memory.
非对称松弛双曲型系统的大时渐近性:一种算法方法
研究了具有非对称弛豫的一维线性双曲型系统的稳定性。引入一个新的频率相关卡尔曼稳定性条件,证明了支持非齐次次矫顽力形式的抽象衰减结果。与齐次设置相反,衰减率取决于如何满足卡尔曼条件,并且在大多数情况下,会发生导数损失:必须要求对初始数据进行额外的规则性假设以确保衰减。在结构假设下,我们通过提供一个广泛适用的Lyapunov泛函构造算法来完善我们的抽象结果。这使我们能够系统地建立给定系统的衰减估计,并揭示代数消去(超出了基于卡尔曼的方法的范围),减少高频导数的损失。为了证明我们的方法的适用性,我们得到了描述非线性声波传播的杉本模型和具有记忆的Timoshenko型波束模型的新的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信