In situ incorporation of boronate into carbonized alginate nanogels for targeted inhibition of triple-negative breast cancer metastasis by inducing cytoskeletal disruption, cell growth arrest, and apoptosis
Saumyadip Sarkar , Chen-Yow Wang , Pang-Hung Hsu , Binesh Unnikrishnan , Yu Tang , Shiow-Yi Chen , Chin-Jung Lin , Anisha Anand , Ren-Hong Shih , Li Er Hean , Pin-Yuan Chen , Ruo-Yi Huang , C. Perry Chou , Chih-Ching Huang
{"title":"In situ incorporation of boronate into carbonized alginate nanogels for targeted inhibition of triple-negative breast cancer metastasis by inducing cytoskeletal disruption, cell growth arrest, and apoptosis","authors":"Saumyadip Sarkar , Chen-Yow Wang , Pang-Hung Hsu , Binesh Unnikrishnan , Yu Tang , Shiow-Yi Chen , Chin-Jung Lin , Anisha Anand , Ren-Hong Shih , Li Er Hean , Pin-Yuan Chen , Ruo-Yi Huang , C. Perry Chou , Chih-Ching Huang","doi":"10.1016/j.biomaterials.2025.123500","DOIUrl":null,"url":null,"abstract":"<div><div>Metastasis is the primary cause of cancer mortality, and its prevention is particularly challenging due to the complex tumor microenvironment. Carbon nanomaterials are well known to act as drug delivery systems for therapeutics. Nonetheless, their inherent capabilities in combating tumor cells remain underexplored. In this study, we report the synthesis and characterization of novel boronate-incorporated alginate carbon nanogels (Bor/Alg-CNGs) as promising anti-metastatic agents for effectively suppressing migration and invasion of triple-negative breast cancer (TNBC) cells, while triggering cell-cycle arrest. Notably, Bor/Alg-CNGs decreased cell viability of TNBC cells through disorganization of F-actin, a critical factor mediating cellular migration. In an <em>in vivo</em> study, Bor/Alg-CNGs reduced metastatic lung nodules in a tumor-induced mouse model by >85 %, compared to the untreated controls. Transcriptomics and proteomics analyses further validated the <em>in vivo</em> results with an in-depth understanding of the role of Bor/Alg-CNGs in the stress response of reactive oxygen species-induced cells and downregulation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, leading to metabolic breakdown, cell growth arrest, and apoptosis. These findings underscore the potent anti-metastatic properties of Bor/Alg-CNGs based on their multifunctional role in inhibiting cellular mechanisms essential for metastasis. Compared to many existing carbon nanomaterials, Bor/Alg-CNGs offer enhanced specificity and efficiency in targeting metastatic pathways. Their ability to target and disrupt metastatic processes while minimizing side effects holds the potential for development as a new class of anti-metastatic agents in cancer therapy, warranting further mechanistic and clinical investigations to realize their full therapeutic potential.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"324 ","pages":"Article 123500"},"PeriodicalIF":12.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225004193","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metastasis is the primary cause of cancer mortality, and its prevention is particularly challenging due to the complex tumor microenvironment. Carbon nanomaterials are well known to act as drug delivery systems for therapeutics. Nonetheless, their inherent capabilities in combating tumor cells remain underexplored. In this study, we report the synthesis and characterization of novel boronate-incorporated alginate carbon nanogels (Bor/Alg-CNGs) as promising anti-metastatic agents for effectively suppressing migration and invasion of triple-negative breast cancer (TNBC) cells, while triggering cell-cycle arrest. Notably, Bor/Alg-CNGs decreased cell viability of TNBC cells through disorganization of F-actin, a critical factor mediating cellular migration. In an in vivo study, Bor/Alg-CNGs reduced metastatic lung nodules in a tumor-induced mouse model by >85 %, compared to the untreated controls. Transcriptomics and proteomics analyses further validated the in vivo results with an in-depth understanding of the role of Bor/Alg-CNGs in the stress response of reactive oxygen species-induced cells and downregulation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, leading to metabolic breakdown, cell growth arrest, and apoptosis. These findings underscore the potent anti-metastatic properties of Bor/Alg-CNGs based on their multifunctional role in inhibiting cellular mechanisms essential for metastasis. Compared to many existing carbon nanomaterials, Bor/Alg-CNGs offer enhanced specificity and efficiency in targeting metastatic pathways. Their ability to target and disrupt metastatic processes while minimizing side effects holds the potential for development as a new class of anti-metastatic agents in cancer therapy, warranting further mechanistic and clinical investigations to realize their full therapeutic potential.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.