Enhancing the Shelf Life and Stress Tolerance of the Biocontrol Agent Trichoderma harzianum by Encapsulation in Green Matrices of Nanocellulose and Carboxymethyl Cellulose

IF 2.3 Q1 AGRICULTURE, MULTIDISCIPLINARY
Mariana G. Brondi, Camila Florencio, Vanessa M. Vasconcellos, Caue Ribeiro and Cristiane S. Farinas*, 
{"title":"Enhancing the Shelf Life and Stress Tolerance of the Biocontrol Agent Trichoderma harzianum by Encapsulation in Green Matrices of Nanocellulose and Carboxymethyl Cellulose","authors":"Mariana G. Brondi,&nbsp;Camila Florencio,&nbsp;Vanessa M. Vasconcellos,&nbsp;Caue Ribeiro and Cristiane S. Farinas*,&nbsp;","doi":"10.1021/acsagscitech.5c0018910.1021/acsagscitech.5c00189","DOIUrl":null,"url":null,"abstract":"<p >Microbial inoculants offer a promising solution for reducing the environmental impact of agrochemicals while enhancing crop productivity within a bioeconomy framework. However, extending the shelf life and enhancing the stability of these beneficial microorganisms are crucial for making these biological solutions viable alternatives to chemical fertilizers and pesticides. In this study, we developed biobased encapsulation matrices using cellulose nanocrystals (CNC) and a composite of CNC and carboxymethyl cellulose (CNC:CMC) to encapsulate spores of the biocontrol fungus <i>Trichoderma harzianum</i>. Our findings revealed that encapsulation significantly increased the microorganism shelf life. After 1 year, approximately 10<sup>8</sup> CFU/mL of the initial 10<sup>9</sup> CFU/mL encapsulated spores remained viable, while nearly all free spores were no longer viable. Encapsulation also improved the microorganism resistance to stressful conditions, such as heat, UV radiation, and chemical fungicide exposure. Specifically, the CNC and CNC:CMC matrices maintained up to 4.7 × 10<sup>8</sup> CFU/mL after fungicide exposure. Furthermore, encapsulation preserved the antagonistic activity of <i>T. harzianum</i> against the phytopathogen <i>Fusarium solani</i> for up to 1 year. These results demonstrate the potential of cellulose-based matrices for developing microbial inoculant formulations that support the shift toward more sustainable agricultural practices.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 6","pages":"1178–1188 1178–1188"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsagscitech.5c00189","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial inoculants offer a promising solution for reducing the environmental impact of agrochemicals while enhancing crop productivity within a bioeconomy framework. However, extending the shelf life and enhancing the stability of these beneficial microorganisms are crucial for making these biological solutions viable alternatives to chemical fertilizers and pesticides. In this study, we developed biobased encapsulation matrices using cellulose nanocrystals (CNC) and a composite of CNC and carboxymethyl cellulose (CNC:CMC) to encapsulate spores of the biocontrol fungus Trichoderma harzianum. Our findings revealed that encapsulation significantly increased the microorganism shelf life. After 1 year, approximately 108 CFU/mL of the initial 109 CFU/mL encapsulated spores remained viable, while nearly all free spores were no longer viable. Encapsulation also improved the microorganism resistance to stressful conditions, such as heat, UV radiation, and chemical fungicide exposure. Specifically, the CNC and CNC:CMC matrices maintained up to 4.7 × 108 CFU/mL after fungicide exposure. Furthermore, encapsulation preserved the antagonistic activity of T. harzianum against the phytopathogen Fusarium solani for up to 1 year. These results demonstrate the potential of cellulose-based matrices for developing microbial inoculant formulations that support the shift toward more sustainable agricultural practices.

纳米纤维素和羧甲基纤维素绿色基质包封法提高哈兹木霉的保存期和抗旱能力
微生物接种剂为减少农用化学品对环境的影响,同时在生物经济框架内提高作物生产力提供了一个有希望的解决方案。然而,延长这些有益微生物的保质期和增强其稳定性对于使这些生物溶液成为化肥和农药的可行替代品至关重要。在这项研究中,我们开发了基于纤维素纳米晶体(CNC)和CNC与羧甲基纤维素(CNC:CMC)复合的生物基包封基质来包封生物防治真菌哈兹木霉的孢子。我们的研究结果表明,包封显着增加了微生物的保质期。1年后,最初的109 CFU/mL包封孢子中约有108 CFU/mL仍然存活,而几乎所有的游离孢子都不再存活。包封还提高了微生物对压力条件的抵抗力,如热、紫外线辐射和化学杀菌剂暴露。具体而言,CNC和CNC:CMC基质在杀菌剂暴露后保持高达4.7 × 108 CFU/mL。此外,包封法可使哈氏梭菌对植物病原菌枯萎病的拮抗活性保持长达1年。这些结果证明了纤维素基基质在开发微生物接种剂配方方面的潜力,这些配方支持向更可持续的农业实践的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信