Global spatio-temporal ERA5 precipitation downscaling to km and sub-hourly scale using generative AI

IF 8.4 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Luca Glawion, Julius Polz, Harald Kunstmann, Benjamin Fersch, Christian Chwala
{"title":"Global spatio-temporal ERA5 precipitation downscaling to km and sub-hourly scale using generative AI","authors":"Luca Glawion, Julius Polz, Harald Kunstmann, Benjamin Fersch, Christian Chwala","doi":"10.1038/s41612-025-01103-y","DOIUrl":null,"url":null,"abstract":"<p>The spatial and temporal distribution of precipitation significantly impacts human lives. While reanalysis datasets provide consistent long-term global precipitation information that allows investigations of rainfall-driven hazards like larger-scale flooding, they lack the resolution to capture the high spatio-temporal variability of precipitation and miss intense local rainfall events. Here, we introduce spateGAN-ERA5, the first deep learning-based spatio-temporal downscaling of precipitation data on a global scale. SpateGAN-ERA5 enhances ERA5 precipitation data from 24 km and 1 h to 2 km and 10 min, delivering high-resolution rainfall fields with realistic spatio-temporal patterns and accurate rain rate distribution, including extremes. Its computational efficiency enables the generation of a large ensemble of solutions, addressing uncertainties inherent to downscaling challenges and supports practical applicability for generating high-resolution precipitation data for arbitrary ERA5 time periods and regions on demand. Trained solely on data from Germany and validated in the US and Australia, considering diverse climates, including tropical rainfall regimes, spateGAN-ERA5 demonstrates strong generalization, indicating robust global applicability. It fulfills critical needs for high-resolution precipitation data in hydrological and meteorological research.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"104 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01103-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The spatial and temporal distribution of precipitation significantly impacts human lives. While reanalysis datasets provide consistent long-term global precipitation information that allows investigations of rainfall-driven hazards like larger-scale flooding, they lack the resolution to capture the high spatio-temporal variability of precipitation and miss intense local rainfall events. Here, we introduce spateGAN-ERA5, the first deep learning-based spatio-temporal downscaling of precipitation data on a global scale. SpateGAN-ERA5 enhances ERA5 precipitation data from 24 km and 1 h to 2 km and 10 min, delivering high-resolution rainfall fields with realistic spatio-temporal patterns and accurate rain rate distribution, including extremes. Its computational efficiency enables the generation of a large ensemble of solutions, addressing uncertainties inherent to downscaling challenges and supports practical applicability for generating high-resolution precipitation data for arbitrary ERA5 time periods and regions on demand. Trained solely on data from Germany and validated in the US and Australia, considering diverse climates, including tropical rainfall regimes, spateGAN-ERA5 demonstrates strong generalization, indicating robust global applicability. It fulfills critical needs for high-resolution precipitation data in hydrological and meteorological research.

Abstract Image

基于生成式人工智能的全球时空ERA5降水降尺度至公里和亚时尺度
降水的时空分布对人类生活有重要影响。虽然再分析数据集提供了一致的长期全球降水信息,可用于调查降雨驱动的灾害,如大规模洪水,但它们缺乏捕捉降水的高时空变动性的分辨率,并错过了强烈的局部降雨事件。在这里,我们介绍了spateGAN-ERA5,这是第一个基于深度学习的全球尺度降水数据的时空降尺度。SpateGAN-ERA5增强了ERA5从24公里1小时到2公里10分钟的降水数据,提供具有真实时空格局和精确降雨率分布(包括极端)的高分辨率降雨场。它的计算效率能够生成大量的解决方案,解决缩小尺度挑战所固有的不确定性,并支持根据需要生成任意ERA5时间段和区域的高分辨率降水数据的实际适用性。spateGAN-ERA5仅根据德国的数据进行训练,并在美国和澳大利亚进行了验证,考虑到不同的气候,包括热带降雨制度,spateGAN-ERA5具有很强的泛化能力,表明具有强大的全球适用性。它满足了水文和气象研究中对高分辨率降水数据的关键需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信