Weihong Zeng, Xinrui Ding, Yuan Jin, Bin Liu, Runhao Zeng, Feng Gong, Yan Lou, Lelun Jiang, Hui Li
{"title":"Magnetic soft millirobot with simultaneous locomotion and sensing capability","authors":"Weihong Zeng, Xinrui Ding, Yuan Jin, Bin Liu, Runhao Zeng, Feng Gong, Yan Lou, Lelun Jiang, Hui Li","doi":"10.1038/s41528-025-00437-0","DOIUrl":null,"url":null,"abstract":"<p>Soft millirobot has attracted significant attention and demonstrated tremendous potential in human-robot interactions and safety inspections. Locomotion and perception are two crucial features for achieving effective gait and practical applications of robots. Inspired by nature, this research reports a magnetic soft millirobot that integrates locomotion and sensing capacities simultaneously. Microconical matrix with rich and regular surface morphologies are constructed directly inside the millirobot as both multilegged and triboelectric-enhanced sensing structures via cooperation of jet printing and magnetization-induction method with high-speed and high-precision. The robot can both recognize its current body state across various application scenarios and identify terrains through a machine learning strategy. Our work presents a customizable approach for smart millirobots to perform tasks in nonmagnetic structured environments and provides embedded sensing capability for next-generation soft robots.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"6 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00437-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Soft millirobot has attracted significant attention and demonstrated tremendous potential in human-robot interactions and safety inspections. Locomotion and perception are two crucial features for achieving effective gait and practical applications of robots. Inspired by nature, this research reports a magnetic soft millirobot that integrates locomotion and sensing capacities simultaneously. Microconical matrix with rich and regular surface morphologies are constructed directly inside the millirobot as both multilegged and triboelectric-enhanced sensing structures via cooperation of jet printing and magnetization-induction method with high-speed and high-precision. The robot can both recognize its current body state across various application scenarios and identify terrains through a machine learning strategy. Our work presents a customizable approach for smart millirobots to perform tasks in nonmagnetic structured environments and provides embedded sensing capability for next-generation soft robots.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.