Zhanhang Wang , Yonglong He , Muhua Luo , Shujuan Liu , Jinxing Hou , Binyun Cao , Xiaopeng An
{"title":"Transfer toxicity of polystyrene microplastics in vivo: Multi-organ crosstalk","authors":"Zhanhang Wang , Yonglong He , Muhua Luo , Shujuan Liu , Jinxing Hou , Binyun Cao , Xiaopeng An","doi":"10.1016/j.envint.2025.109604","DOIUrl":null,"url":null,"abstract":"<div><div>The accumulation of microplastics (MPs) within the environment caused serious ecological and health problems. Nevertheless, its systemic toxicity to organisms and its mechanisms lack effective evidence. This study established a model of MP exposure through the gavage of polystyrene (PS)-MPs particles to maternal mice on days 1 to 21 of lactation. The results demonstrated that PS-MPs were distributed widely in maternal mice, occurring mainly in the feces, colon, liver and mammary glands. Further experiments revealed that the gut and blood-milk barriers were disrupted, and pathological injury and inflammatory reactions were observed in the liver, gut, and mammary glands. Metabolomic and metagenome analysis indicated abnormalities in hepatic bile acid metabolism and significant alterations in the gut microbiota after exposure to PS-MPs. These alterations led to increased disruption of the intestine-liver axis. Notably, with fecal microbiota transplantation and antibiotic experiments, we observed that elimination of the intestinal microbiota reduced tissue inflammation and improved gut and blood-milk barrier leakage. These findings demonstrated that PS-MPs exaggerated intestine-liver axis disorders by inducing colonic injury, intestinal ecological dysregulation and abnormal hepatic bile acid metabolism. Furthermore, PS-MPs translocated via the intestine-liver axis and exerted broader toxic effects on mammary tissue. Overall, our study uncovered the transfer toxicity of PS-MPs in mice, proposing the possibility of a gut-liver-mammary axis.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"202 ","pages":"Article 109604"},"PeriodicalIF":10.3000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412025003551","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The accumulation of microplastics (MPs) within the environment caused serious ecological and health problems. Nevertheless, its systemic toxicity to organisms and its mechanisms lack effective evidence. This study established a model of MP exposure through the gavage of polystyrene (PS)-MPs particles to maternal mice on days 1 to 21 of lactation. The results demonstrated that PS-MPs were distributed widely in maternal mice, occurring mainly in the feces, colon, liver and mammary glands. Further experiments revealed that the gut and blood-milk barriers were disrupted, and pathological injury and inflammatory reactions were observed in the liver, gut, and mammary glands. Metabolomic and metagenome analysis indicated abnormalities in hepatic bile acid metabolism and significant alterations in the gut microbiota after exposure to PS-MPs. These alterations led to increased disruption of the intestine-liver axis. Notably, with fecal microbiota transplantation and antibiotic experiments, we observed that elimination of the intestinal microbiota reduced tissue inflammation and improved gut and blood-milk barrier leakage. These findings demonstrated that PS-MPs exaggerated intestine-liver axis disorders by inducing colonic injury, intestinal ecological dysregulation and abnormal hepatic bile acid metabolism. Furthermore, PS-MPs translocated via the intestine-liver axis and exerted broader toxic effects on mammary tissue. Overall, our study uncovered the transfer toxicity of PS-MPs in mice, proposing the possibility of a gut-liver-mammary axis.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.