Woorin Kim, Nicola Schmidt, Matthias Jost, Elijah Mbandi Mkala, Sylke Winkler, Guangwan Hu, Tony Heitkam, Stefan Wanke
{"title":"Diverging repeatomes in holoparasitic Hydnoraceae uncover a playground of genome evolution","authors":"Woorin Kim, Nicola Schmidt, Matthias Jost, Elijah Mbandi Mkala, Sylke Winkler, Guangwan Hu, Tony Heitkam, Stefan Wanke","doi":"10.1111/nph.70280","DOIUrl":null,"url":null,"abstract":"Summary<jats:list list-type=\"bullet\"> <jats:list-item>The transition from an autotrophic to a heterotrophic lifestyle is associated with numerous genomic changes. These often involve large genomic alterations, potentially driven by repetitive DNAs. Despite their recognized role in shaping plant genomes, the contribution of repetitive DNAs to parasitic plant genome evolution remains largely unexplored. This study presents the first analysis of repetitive DNAs in Hydnoraceae genomes, a plant family whose members are holoparasitic.</jats:list-item> <jats:list-item>Repetitive DNAs were identified and annotated <jats:italic>de novo</jats:italic>. Abundant transposable elements and 35S ribosomal DNA in the <jats:italic>Hydnora visseri</jats:italic> genome were reconstructed <jats:italic>in silico</jats:italic>. Their patterns of abundance and presence–absence were individually and comparatively analyzed.</jats:list-item> <jats:list-item>Both Hydnoraceae genera, <jats:italic>Hydnora</jats:italic> and <jats:italic>Prosopanche</jats:italic>, exhibit distinct repeatome profiles which challenge our current understanding of repeatome and rDNA evolution. The <jats:italic>Hydnora</jats:italic> genomes are dominated by long terminal repeat retrotransposons, while the <jats:italic>Prosopanche</jats:italic> genomes vary greatly in their repeat composition: <jats:italic>Prosopanche bonacinae</jats:italic> with a highly abundant single DNA transposon and <jats:italic>Prosopanche panguanensis</jats:italic> with over 15% 5S rDNA, compared to ≤ 0.1% in the <jats:italic>Hydnora</jats:italic> genomes.</jats:list-item> <jats:list-item>The repeat profiles align with the phylogeny, geographical distribution, and host shifts of the Hydnoraceae, indicating a potential role of repetitive DNAs in shaping Hydnoraceae genomes to adapt to the parasitic lifestyle.</jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"10 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70280","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryThe transition from an autotrophic to a heterotrophic lifestyle is associated with numerous genomic changes. These often involve large genomic alterations, potentially driven by repetitive DNAs. Despite their recognized role in shaping plant genomes, the contribution of repetitive DNAs to parasitic plant genome evolution remains largely unexplored. This study presents the first analysis of repetitive DNAs in Hydnoraceae genomes, a plant family whose members are holoparasitic.Repetitive DNAs were identified and annotated de novo. Abundant transposable elements and 35S ribosomal DNA in the Hydnora visseri genome were reconstructed in silico. Their patterns of abundance and presence–absence were individually and comparatively analyzed.Both Hydnoraceae genera, Hydnora and Prosopanche, exhibit distinct repeatome profiles which challenge our current understanding of repeatome and rDNA evolution. The Hydnora genomes are dominated by long terminal repeat retrotransposons, while the Prosopanche genomes vary greatly in their repeat composition: Prosopanche bonacinae with a highly abundant single DNA transposon and Prosopanche panguanensis with over 15% 5S rDNA, compared to ≤ 0.1% in the Hydnora genomes.The repeat profiles align with the phylogeny, geographical distribution, and host shifts of the Hydnoraceae, indicating a potential role of repetitive DNAs in shaping Hydnoraceae genomes to adapt to the parasitic lifestyle.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.