Stefan Timm, Hu Sun, Martin Hagemann, Wei Huang, Alisdair R Fernie
{"title":"An old dog with new tricks – the value of photorespiration as a central metabolic hub with implications for environmental acclimation","authors":"Stefan Timm, Hu Sun, Martin Hagemann, Wei Huang, Alisdair R Fernie","doi":"10.1093/plphys/kiaf258","DOIUrl":null,"url":null,"abstract":"Photorespiration serves as a metabolic repair system that safeguards photosynthetic carbon fixation in photoautotrophic organisms thriving in today’s oxygen-rich atmosphere. This essential process detoxifies the inhibitory metabolite 2-phosphoglycolate (2PG), an unavoidable byproduct of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) activity in the light. If not efficiently metabolized, 2PG impairs key enzymatic processes involved in carbon assimilation and utilization thereby inhibiting growth in oxygenic phototrophs. Decades of research have unraveled the biochemical and genetic intricacies of photorespiration, establishing it as the second-highest carbon flux in illuminated leaves. Here, we discuss recent developments that have expanded our understanding of the pathway, revealing novel metabolic players, intricate inter-organelle interactions, and new regulatory networks. Isotope labeling studies and reverse genetics have identified further interactions of the classical photorespiratory cycle with central carbon and nitrogen metabolism. In order to enhance photosynthetic efficiency, synthetic biology approaches have reengineered photorespiration, either by integrating bypass pathways or optimizing native enzymes. These interventions highlight the vast potential of optimized photorespiration to boost photosynthetic yield and enhance plant adaptation to future climates. Very recently, the importance of active photorespiration in guard cells was discovered, linking it to the regulation of stomatal metabolism and behavior. Collectively, these recent findings reinforce the immense promise of continued photorespiratory research in developing innovative strategies for improving plant yield and resilience.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"50 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf258","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Photorespiration serves as a metabolic repair system that safeguards photosynthetic carbon fixation in photoautotrophic organisms thriving in today’s oxygen-rich atmosphere. This essential process detoxifies the inhibitory metabolite 2-phosphoglycolate (2PG), an unavoidable byproduct of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) activity in the light. If not efficiently metabolized, 2PG impairs key enzymatic processes involved in carbon assimilation and utilization thereby inhibiting growth in oxygenic phototrophs. Decades of research have unraveled the biochemical and genetic intricacies of photorespiration, establishing it as the second-highest carbon flux in illuminated leaves. Here, we discuss recent developments that have expanded our understanding of the pathway, revealing novel metabolic players, intricate inter-organelle interactions, and new regulatory networks. Isotope labeling studies and reverse genetics have identified further interactions of the classical photorespiratory cycle with central carbon and nitrogen metabolism. In order to enhance photosynthetic efficiency, synthetic biology approaches have reengineered photorespiration, either by integrating bypass pathways or optimizing native enzymes. These interventions highlight the vast potential of optimized photorespiration to boost photosynthetic yield and enhance plant adaptation to future climates. Very recently, the importance of active photorespiration in guard cells was discovered, linking it to the regulation of stomatal metabolism and behavior. Collectively, these recent findings reinforce the immense promise of continued photorespiratory research in developing innovative strategies for improving plant yield and resilience.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.