Bokyung Kim, Qijia Huang, Brady Taylor, Qilin Zheng, Jonathan Ku, Yiran Chen, Hai Li
{"title":"MulPi: A Multi-class and Patient-independent Epileptic Seizure Classifier with Co-designed Input-stationary Computing-in-SRAM.","authors":"Bokyung Kim, Qijia Huang, Brady Taylor, Qilin Zheng, Jonathan Ku, Yiran Chen, Hai Li","doi":"10.1109/TBCAS.2025.3579273","DOIUrl":null,"url":null,"abstract":"<p><p>Unprovoked seizures have threatened epilepsy patients over 70 million. Automated classification to detect and predict seizures could bring seizure-free lives to epilepsy patients, delivering them from fatal danger and increasing the quality of life. Authentic detection and prediction of seizures require 1) multi-class (Mul) and 2) patient-independent (Pi) classification. Recent implementable chips for seizure classification rarely satisfy the two requirements due to restricted resources in small chips; therefore, high efficiency is imperative along with accuracy. This paper introduces an efficient MulPi chip, fabricated for the first time to simultaneously fulfill multi-class and patient independence, based on a co-design approach. We develop a 5-layer convolutional neural network (CNN), MulPiCNN, with advanced training techniques for lightness and accuracy. At the hardware level, our SRAM-based chip leverages computingin- memory (CIM) for efficiency. The fabricated MulPi chip is distinguished from prior CIMs in two folds, namely ISRW-CIM: a) input-stationary (IS) CIM for resource-saving, and b) rowwise (RW) computing to address a challenge of SRAM CIM, empowered by our novel 2T-Hadamard product unit (HPU). MulPi outperforms state-of-the-art chips with 98.5% sensitivity and 99.2% specificity, classifying in 0.12s and 0.348mm<sup>2</sup>.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3579273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Unprovoked seizures have threatened epilepsy patients over 70 million. Automated classification to detect and predict seizures could bring seizure-free lives to epilepsy patients, delivering them from fatal danger and increasing the quality of life. Authentic detection and prediction of seizures require 1) multi-class (Mul) and 2) patient-independent (Pi) classification. Recent implementable chips for seizure classification rarely satisfy the two requirements due to restricted resources in small chips; therefore, high efficiency is imperative along with accuracy. This paper introduces an efficient MulPi chip, fabricated for the first time to simultaneously fulfill multi-class and patient independence, based on a co-design approach. We develop a 5-layer convolutional neural network (CNN), MulPiCNN, with advanced training techniques for lightness and accuracy. At the hardware level, our SRAM-based chip leverages computingin- memory (CIM) for efficiency. The fabricated MulPi chip is distinguished from prior CIMs in two folds, namely ISRW-CIM: a) input-stationary (IS) CIM for resource-saving, and b) rowwise (RW) computing to address a challenge of SRAM CIM, empowered by our novel 2T-Hadamard product unit (HPU). MulPi outperforms state-of-the-art chips with 98.5% sensitivity and 99.2% specificity, classifying in 0.12s and 0.348mm2.