Pengfei Li, Jun Ruan, Shilong Liu, Dumitru Mihalache, Boris A Malomed
{"title":"Pure-quartic domain-wall solitons as topological bits for data transmission.","authors":"Pengfei Li, Jun Ruan, Shilong Liu, Dumitru Mihalache, Boris A Malomed","doi":"10.1364/OL.563984","DOIUrl":null,"url":null,"abstract":"<p><p>Domain walls (DWs) are topological defects produced by symmetry-breaking phase transitions. Although DWs have been the subject of much work due to their fundamental physical properties, they have not been explored in optical systems with higher-order dispersion. Recent experimental and theoretical works have demonstrated that pure-quartic (PQ) solitons, with their specific energy-width scaling, arise from the interplay of the quartic group-velocity dispersion (GVD) and Kerr nonlinearity. Here, we report solutions for PQ-DW solitons for the model of optical media with the PQ GVD. The analysis demonstrates that they are stable modes. Further investigation reveals their potential as data carriers for optical telecommunications. These results broaden the variety of optical solitons maintained by diverse nonlinear media.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 12","pages":"3950-3953"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.563984","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Domain walls (DWs) are topological defects produced by symmetry-breaking phase transitions. Although DWs have been the subject of much work due to their fundamental physical properties, they have not been explored in optical systems with higher-order dispersion. Recent experimental and theoretical works have demonstrated that pure-quartic (PQ) solitons, with their specific energy-width scaling, arise from the interplay of the quartic group-velocity dispersion (GVD) and Kerr nonlinearity. Here, we report solutions for PQ-DW solitons for the model of optical media with the PQ GVD. The analysis demonstrates that they are stable modes. Further investigation reveals their potential as data carriers for optical telecommunications. These results broaden the variety of optical solitons maintained by diverse nonlinear media.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.