Pure quartic traveling wave solutions: a numerical study.

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-06-15 DOI:10.1364/OL.563491
Andrea Armaroli
{"title":"Pure quartic traveling wave solutions: a numerical study.","authors":"Andrea Armaroli","doi":"10.1364/OL.563491","DOIUrl":null,"url":null,"abstract":"<p><p>We study a family of periodic traveling wave solution of a pure quartic generalized nonlinear Schrödinger equation (NLSE). We focus on dn-oidal-like solutions with a nonzero average component. After numerically finding a one-parameter family of solutions and comparing it to their conventional NLSE counterpart, we numerically solve the corresponding modulational instability problem. This shows a nontrivial trend, where the instability occurs in specific intervals of the parameter separated by stability islands. Numerical simulations confirm the soundness of this result, thus proving that high-order dispersion terms in an optical waveguide allow to observe the propagation of regular and stable comb-like spectra.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 12","pages":"3943-3946"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.563491","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a family of periodic traveling wave solution of a pure quartic generalized nonlinear Schrödinger equation (NLSE). We focus on dn-oidal-like solutions with a nonzero average component. After numerically finding a one-parameter family of solutions and comparing it to their conventional NLSE counterpart, we numerically solve the corresponding modulational instability problem. This shows a nontrivial trend, where the instability occurs in specific intervals of the parameter separated by stability islands. Numerical simulations confirm the soundness of this result, thus proving that high-order dispersion terms in an optical waveguide allow to observe the propagation of regular and stable comb-like spectra.

纯四次行波解的数值研究。
研究一类纯四次广义非线性Schrödinger方程(NLSE)的周期行波解。我们关注具有非零平均分量的类非椭圆解。在数值上找到单参数解族并将其与传统NLSE对应解族进行比较后,我们数值求解了相应的调制不稳定性问题。这显示了一个非平凡的趋势,其中不稳定性发生在由稳定岛分隔的参数的特定间隔内。数值模拟证实了这一结果的正确性,从而证明了高阶色散项在光波导中允许观察到规则和稳定的梳状光谱的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信