Sina Mohammadi, Matthew Markowitz, Francesco Monticone, Mohammad Ali Miri, Maria Tamargo
{"title":"Multi-wavelength edge detection based on nonlocal multilayer GaAs-AlAs thin films.","authors":"Sina Mohammadi, Matthew Markowitz, Francesco Monticone, Mohammad Ali Miri, Maria Tamargo","doi":"10.1364/OL.563259","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate a compact multilayer GaAs-AlAs structure for passive optical edge detection at multiple wavelengths. Through the inverse design of the layer thicknesses, this structure manipulates spatial frequency components of an incoming wavefront, selectively reflecting high-frequency features while suppressing low-frequency intensity variations. Simulations reveal a reflectance transition from minimal to near-total as a function of numerical aperture, a property leveraged for enhancing edge contrast in optical imaging. For the first time, to our knowledge, we utilize molecular beam epitaxy (MBE) to fabricate edge detection devices, ensuring structural fidelity. Material characterization confirms high-quality interfaces, precise thickness control, and excellent uniformity, validating the suitability of MBE for this application. Experimental angle-resolved reflectance measurements closely align with theoretical predictions, demonstrating the feasibility of this approach for real-time, hardware-based optical image processing. The proposed design automatically works for at least two wavelengths and can be readily extended to operate at multiple wavelengths simultaneously. This work opens new possibilities for employing multilayer interference structures in high-performance optical imaging and real-time signal processing.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 12","pages":"3856-3859"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.563259","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a compact multilayer GaAs-AlAs structure for passive optical edge detection at multiple wavelengths. Through the inverse design of the layer thicknesses, this structure manipulates spatial frequency components of an incoming wavefront, selectively reflecting high-frequency features while suppressing low-frequency intensity variations. Simulations reveal a reflectance transition from minimal to near-total as a function of numerical aperture, a property leveraged for enhancing edge contrast in optical imaging. For the first time, to our knowledge, we utilize molecular beam epitaxy (MBE) to fabricate edge detection devices, ensuring structural fidelity. Material characterization confirms high-quality interfaces, precise thickness control, and excellent uniformity, validating the suitability of MBE for this application. Experimental angle-resolved reflectance measurements closely align with theoretical predictions, demonstrating the feasibility of this approach for real-time, hardware-based optical image processing. The proposed design automatically works for at least two wavelengths and can be readily extended to operate at multiple wavelengths simultaneously. This work opens new possibilities for employing multilayer interference structures in high-performance optical imaging and real-time signal processing.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.