Qiu-Tong Chen, Ming-Wei Liu, Hong-Jie Yu, Jie Zhang, Qi-Qiang He
{"title":"Identification of key genes in the liver of offspring from obesity maternal mice by bioinformatics analysis.","authors":"Qiu-Tong Chen, Ming-Wei Liu, Hong-Jie Yu, Jie Zhang, Qi-Qiang He","doi":"10.1080/15257770.2025.2517378","DOIUrl":null,"url":null,"abstract":"<p><p>Murine maternal obesity predisposes offspring to obesity and other non-communicable diseases. Fetal programming enables researchers to trace this detrimental effect in the early life of the offspring. The aim of the current study was to explore the molecular impact of maternal obesity on the livers of murine offspring at weaning age. C57BL/6 female mice were exposed to a high-fat diet to induce obesity, after which they were mated to produce offspring. At weaning age, the metabolic health of female offspring was assessed and hepatic mRNAs were investigated <i>via</i> mRNA high throughput sequencing. The differentially expressed genes were identified using gene and protein expression analyses. The results revealed that murine maternal obesity altered the blood parameters, liver histology and gene expression of offspring. Cyclin-dependent kinase 1 (Cdk1) and E2f transcription factor 1 (E2f1) were identified as hub genes by bioinformatics analysis. Reverse transcription-quantitative PCR, western blotting and immunohistochemical analysis all revealed that the expression of Cdk1 and E2f1 was decreased in the livers of offspring born from obese does. In conclusion, murine maternal obesity impaired lipid metabolism in the livers of their offspring at weaning age. Furthermore, Cdk1 and E2f1 were identified as hub genes in the regulatory mechanism.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"1-17"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2025.2517378","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Murine maternal obesity predisposes offspring to obesity and other non-communicable diseases. Fetal programming enables researchers to trace this detrimental effect in the early life of the offspring. The aim of the current study was to explore the molecular impact of maternal obesity on the livers of murine offspring at weaning age. C57BL/6 female mice were exposed to a high-fat diet to induce obesity, after which they were mated to produce offspring. At weaning age, the metabolic health of female offspring was assessed and hepatic mRNAs were investigated via mRNA high throughput sequencing. The differentially expressed genes were identified using gene and protein expression analyses. The results revealed that murine maternal obesity altered the blood parameters, liver histology and gene expression of offspring. Cyclin-dependent kinase 1 (Cdk1) and E2f transcription factor 1 (E2f1) were identified as hub genes by bioinformatics analysis. Reverse transcription-quantitative PCR, western blotting and immunohistochemical analysis all revealed that the expression of Cdk1 and E2f1 was decreased in the livers of offspring born from obese does. In conclusion, murine maternal obesity impaired lipid metabolism in the livers of their offspring at weaning age. Furthermore, Cdk1 and E2f1 were identified as hub genes in the regulatory mechanism.
期刊介绍:
Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids.
Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.